Paper Title:
Mechanised Plasma-Powder-Arc-Welding (PPAW) of Aluminium Sheets
  Abstract

The use of aluminium alloys rose in the last decade, as its specific mechanical properties allow a reduction of mass as for example in automotive. Moreover aluminium, due to its high corrosion resistance, is a very important material class in plant construction, where it is used for pipes or container till 250 °C. Aluminium can be welded with different technologies. Nowadays TIG and MIG are mainly used for example in plant construction or in mechanical engineering. Laser beam welding is a widely established technology in automotive. The advantage is the high energy concentration, which leads to a high welding speed and a narrow heat affected zone. Plasma welding is applied when joining aluminium with alternating current, as an easy removal of the oxide layer in the surface of the weld pool is possible. Plasma-Powder-Arc-Welding (PPAW) method has been developed from Plasma Transferred Arc (PTA) weld surfacing and Plasma Arc Welding (PAW) methods by combining a small PAW torch (PAW is traditionally performed with wire as filler material) with powder filler material feeding as used in PTA-equipment. The coupling leads to a better mechanisation of the welding process as the consumable is fed directly through the welding torch. In this paper investigations on aluminium sheets (£ 2 mm) AA5xxx and AA6xxx using different powder materials are reported. The influence of the processing parameters and conditions on the process reliability, when welding with industrial robots butt and corner welds is investigated. Conventional PPAW of aluminium is performed with AlSi12 filler material. A post processing of the joint, as for example anodising in order to improve corrosion resistance, leads to a very different optical aspect, as the colouration of the weld seam after anodising differs from the base material. Thanks to a correct choice of filler material it is possible to reduce the colour differences between base materials/heat affected zone and bead, so that the weldment can be set for high quality optical applications, too.

  Info
Periodical
Main Theme
Edited by
M. Geiger, J. Duflou, H.J.J. Kals, B. Shirvani and U.P. Singh
Pages
225-234
DOI
10.4028/www.scientific.net/AMR.6-8.225
Citation
J. Wilden, J.-P. Bergmann, "Mechanised Plasma-Powder-Arc-Welding (PPAW) of Aluminium Sheets", Advanced Materials Research, Vols. 6-8, pp. 225-234, 2005
Online since
May 2005
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Jian Cheng Fang, Wen Ji Xu, Zhi Yu Zhao, L. Wang
Abstract:There are many technical parameters influencing on the coating quality in plasma spray forming which has become an important technology in...
2823
Authors: Zeng Yi, Xue Bin Zheng, Heng Ji, Wei Wu, Soo Wohn Lee
Abstract:The W coatings were prepared by applying the vacuum plasma spraying process (VPS). The phase composition, microstructure and laser...
849
Authors: Chun Liang Zhang, Li Ping Chen, Bin He
Abstract:Laser cladding of Co-base alloy on the sealing surfaces of nuclear valve clacks has been performed with a 5KW CO2 transverse flowing laser....
890
Authors: Jun Bo Liu, Li Mei Wang, Jun Sheng Jiang, Guang Ming Cao
Surface Engineering/Coatings
Abstract:Fe-Cr-Ti-C composite powder was prepared by precursor carbonization-composition process using the mixture of ferrotitanium, chromium, iron...
167
Authors: Yan Wei Sheng, Zhi Meng Guo, Jun Jie Hao
Chapter 12: Nanotechnology
Abstract:Spherical molybdenum powders were synthesized by (RF) plasma with irregular molybdenum powders. The powder characteristics and...
2563