Paper Title:
Surface Roughness Optimization of some Machining Parameters in Turning Operations Using Taguchi Method
  Abstract

In this study, an attempt has been made to optimize cutting parameters (cutting speed, depth of cut, and feed rate) in conventional turning operations. A Taguchi orthogonal array (L933) was used in surface roughness optimization of a solid round bar of mild steel material. The experimental runs were randomized; two skilled machinists were involved in the turning operation using the same machining parameters. ANOVA analysis was performed to identify the percentage contribution of the factors affecting surface roughness during machining. The optimal cutting combination was determined by using the signal-to-noise ratio and the following results were obtained; speed (level 2) = 55.m/min, depth of cut (level 3) = 0.08mm, and feed rate (levels 3) = at 0.08mm/rev. A prediction of surface roughness was carried out using the optimal setting followed by a confirmatory test on the lathe. The result shows that the confirmatory runs compared favourably (96.44%) with the predicted surface roughness.

  Info
Periodical
Advanced Materials Research (Volumes 62-64)
Edited by
A.O. Akii Ibhadode, I.A. Igbafe and B.U. Anyata
Pages
613-620
DOI
10.4028/www.scientific.net/AMR.62-64.613
Citation
I. M. Dagwa, "Surface Roughness Optimization of some Machining Parameters in Turning Operations Using Taguchi Method", Advanced Materials Research, Vols. 62-64, pp. 613-620, 2009
Online since
February 2009
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Yuan Wei Wang, Song Zhang, Jian Feng Li, Tong Chao Ding
Abstract:In this paper, Taguchi method was applied to design the cutting experiments when end milling Inconel 718 with the TiAlN-TiN coated carbide...
911
Authors: Xiao Li Zhu, Song Zhang, Tong Chao Ding, Yuan Wei Wang
Abstract:The experimental study presented in this paper aims to investigate the effects of cutting parameters on cutting forces, and search the...
96
Authors: Yue Feng Yuan, Wen Ying Zhang, Xing Chang
Chapter 6: New Materials and Advanced Materials
Abstract:Cutting force experiments in turning aluminum-silicon alloy ZL104 are carried out with cement carbide tool YG8. The influence of cutting...
971
Authors: Rao T. Sadasiva, K. Satyanarayana, Y. Praneeth, Anne Venu Gopal
Chapter 15: Meso/Micro Manufacturing Equipment and Processes
Abstract:Milling is the most widely applied machining process for producing flat surfaces and prismatic shapes. To minimize the process time and...
3147
Authors: Peter Monka
Chapter 4: Advances in Tool-Chip Technology, Machining and Surface Roughness
Abstract:The paper deals with the experiments realized by means of cutting tool with linear cutting edge not parallel with the axis of the workpiece...
352