Paper Title:
FISH Analysis of Bacterial Attachment to Copper Sulfides in Bioleaching Processes
  Abstract

Bioleaching is the biological conversion of an insoluble metal compound into a water soluble form. In this process metal sulfides are oxidized to metal ions and sulfate by acidophilic microorganisms capable of oxidizing Fe2+ and/or sulfur-compounds. The metal solubilization from sulfide minerals is a chemical process which requires Fe3+ reduction. It is an environmentally friendly technique and an economical method for recovering metals that requires low investment and operation costs. In this work we studied the bioleaching of two kinds of acid-soluble copper sulfides, one easily leached by mesophilic bacteria (covellite), and the other one refractory to their activity (chalcopyrite), in acidic media with or without Fe2+ ions. We studied attached and planktonic populations of autotrophic bacteria, such as Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans in pure or mixed cultures. The influence of a heterotrophic microorganism, Acidiphilium cryptum, was also studied. Attachment was evaluated with fluorescence staining and FISH using four specific probes. L. ferrooxidans showed highest initial attachment in all cases. The presence of Ap. cryptum increased the cell attachment compared with the autotrophic pure cultures. It was possible to correlate experimental data with a mechanism of bacterial-metal sulfide oxidation, the polysulfide pathway for acid- soluble metal sulfides.

  Info
Periodical
Advanced Materials Research (Volumes 71-73)
Edited by
Edgardo R. Donati, Marisa R. Viera, Eduardo L. Tavani, María A. Giaveno, Teresa L. Lavalle, Patricia A. Chiacchiarini
Pages
329-332
DOI
10.4028/www.scientific.net/AMR.71-73.329
Citation
J. Huergo, C. Bernardelli, M. Viera, W. Sand, E. R. Donati, "FISH Analysis of Bacterial Attachment to Copper Sulfides in Bioleaching Processes", Advanced Materials Research, Vols. 71-73, pp. 329-332, 2009
Online since
May 2009
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Li Juan Zhang, Feng Mao, Kai Li, Xin Hua Chen, Hong Bo Zhou
Chapter 6: Solid Waste and Industrial Solid Waste Comprehensive Utilization and Disposal
Abstract:The feasibility of one strategy of bioaugmentation was assessed to enhance copper extraction from chalcopyrite. Bioaugmentation consisted of...
447
Authors: Sören Bellenberg, Dieu Huynh Ngoc, Laura Castro, Maria Boretska, Wolfgang Sand, Mario Vera
Chapter 2: Microbe-Mineral Interactions
Abstract:Reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), superoxide (O2-) and hydroxyl...
118