Paper Title:
Mathematical Modeling of Hydrogels for Microfluidic Flow Control
  Abstract

A mathematical model of a microfluidic controller comprising a hydrogel in a typical T- and Y-junction is derived and presented. The model takes into account conservation of momentum, mass and ions for laminar incompressible flow and the deformation/sensing of a pH-sensitive hydrogel. The response of the pH-responsive hydrogel is validated with experimental equilibrium swelling curves for which good agreement is found. The model is employed to study the behavior of the hydrogel and its impact on the overall fluid flow in different microfluidic flow channel/hydrogel configurations, e.g. in a T-junction, where the hydrogel can act autonomously and without external power supply to regulate the flow. Finally, we discuss how the model can be generalized for other types of stimuli-responsive hydrogels.

  Info
Periodical
Edited by
Selin Teo, A. Q. Liu, H. Li and B. Tarik
Pages
33-36
DOI
10.4028/www.scientific.net/AMR.74.33
Citation
J. C. Kurnia, E. Birgersson, A. S. Mujumdar, L. C. Quah, "Mathematical Modeling of Hydrogels for Microfluidic Flow Control", Advanced Materials Research, Vol. 74, pp. 33-36, 2009
Online since
June 2009
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Feng Tian, Zhen Bin Gao, Yi Cai Sun
Chapter 12: Measuring and Testing Instruments
Abstract:A flow sensor for liquids, based on the principle of fluid-structure heat transfer is presented. The heater and thermistor are integrated and...
1213
Authors: Jin Xian Wang, Zeng Wen, Song Jing Li
Chapter 4: Advanced Control Research and Application
Abstract:A pneumatic microvalve which can be used in pneumatic pressure control for lab-on-a-chip applications is presented in this paper. In order to...
244