Paper Title:
A Study on the Properties, Friction, Wear and Adhesion of HVOF Thermal Spray Coating of Micron Size Co-Alloy Powder
  Abstract

High velocity oxygen fuel (HVOF) thermal spray coating of micron size (μ) T800 powder has been studied for the durability improvement of sliding machine components. The optimal coating process (OCP), surface properties, friction, wear behavior and adhesion of HVOF T800 coating have been investigated. The temperature dependence of friction coefficient and wear behavior have been studied at 25°C and at an elevated temperature 538°C (1,000°F) for the study of the temperature effects on FC and wear behaviors of the coating and for the application on high speed air bearing spindle which operates with no lubricants. The OCP was determined from the best surface properties of the 16 OCP searching coatings designed by the Taguchi experimental program of four spray parameters with three levels: a hydrogen flow rate (FR) of 38-42 FMR (1 FMR=12scfh=9.44×10-5 m/s), oxygen FR of 65-70 FMR and feed rate of 30 g/min, and a spray distance of 5 inch. Hardness, roughness and porosity observed from the 16 coatings were 560-640 Hv (5488-6272 MPa), 2.2-3.0 μm and 0.01-0.04% respectively. Friction coefficient (FC) decreased from 5.5-7.0 to 4.8-6.0 with increasing the sliding surface temperature from 25°C to 538°C because of the higher lubrication effect of Co oxide debris at the higher temperature. Wear trace of the coating and counter sliding SUS 304 surface decreased to more than a half with increasing the sliding surface temperature from 25°C to 538°C. Tensile bond strength (TBS) and tensile fracture location (TFL) of Ti64 / T800 were 8,770 psi (60.5 MPa) and near the middle of the coating respectively. Bond coat NiCr did not influence on the TBS of the coating. The adhesion between Ti64 substrate and T800 coating (Ti64/T800) was stronger than the cohesion strength 8,770 psi (60.5 MPa) of T800 coating. These showed that Ti64/T800 coating was recommendable for durability improvement coating on high speed spindle of Ti64.

  Info
Periodical
Edited by
Huibin Xu, Khiam Aik Khor, Shengkai Gong, Hongbo Guo
Pages
19-24
DOI
10.4028/www.scientific.net/AMR.75.19
Citation
T. Y. Cho, J. H. Yoon, K. O. Song, Y. K. Joo, J. Y. Cho, J. H. Kang, S. H. Zhang, H. G. Chun, S. C. Kwon, "A Study on the Properties, Friction, Wear and Adhesion of HVOF Thermal Spray Coating of Micron Size Co-Alloy Powder", Advanced Materials Research, Vol. 75, pp. 19-24, 2009
Online since
June 2009
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Zhen Bing Cai, Min Hao Zhu, Xiu Zhou Lin, Ji Liang Mo, Zhong Rong Zhou
Abstract:Nickel base Ni60 and cobalt base Co-Cr-W coatings were prepared on substrate of refractory alloy steel 4Cr14NiW2Mo by laser-cladding...
878
Authors: Bong Hwan Kim, Sang Mok Lee
Abstract:Al-Cu-Fe-B quasicrystalline and Mo coatings were obtained on the mild steel and brass substrates by thermal spraying routes for the purpose...
715
Authors: Sheng Zhu, Guo Feng Han, Xiao Ming Wang, Wen Bo Du
Chapter 1: Composites
Abstract:In this study, Al-Si alloy protective coating was deposited on the surface of ZM5 magnesium alloy by cold spray technology. Researchers...
142
Authors: San Ming Du, Yong Ping Niu, Yong Zhen Zhang
Chapter 5: Coatings and Surface Engineering
Abstract:In the present study, 20 Wt. % ZrO2-Al2O3-17 wt.% TiO2 powders were sprayed using a plasma-spray...
420
Authors: Ren Guo Song, Pu Hong Tang, Chao Wang, Guo Lu
Chapter 2: Surface Engineering/Coatings
Abstract:Al2O3 and Al2O3-40wt.%TiO2 ceramic coatings on H13 hot-worked die steel have been...
235