Paper Title:
Microstructures and Wear-Resistant Properties of In Situ WCp/W Wire Hybrid Reinforced Iron Matrix Composites via Electromagnetic Field
  Abstract

In the paper, tungsten carbide (WC) particles can be in-situ synthesized by applying electromagnetic field to the system consisting of tungsten wires and gray cast iron melt at 1573 K. The microstructures and wear-resistant properties of composites reinforced by both WC particles and the residual tungsten wires were investigated by XRD, SEM, EDS, micro-hardness and pin-on-disc wear measurements. The results show that, with enhancing frequencies of electromagnetic field from 0 to 5 KHz, the amounts of in-situ WC particles increased and of the residual tungsten wires gradually decreased until tungsten wires completely reacted. Due to the higher hardness of in-situ WCp(2100-2231HV0.1) and the strong interfacial bonding, the composites displayed an excellent wear-resistant properties. When the frequency was 5 kHz, the wear loss for the composite fabricated was optimal and 2.69 times lower than that of reference samples.

  Info
Periodical
Advanced Materials Research (Volumes 79-82)
Edited by
Yansheng Yin and Xin Wang
Pages
1463-1466
DOI
10.4028/www.scientific.net/AMR.79-82.1463
Citation
L. B. Niu, Y. H. Xu, H. Wu, "Microstructures and Wear-Resistant Properties of In Situ WCp/W Wire Hybrid Reinforced Iron Matrix Composites via Electromagnetic Field", Advanced Materials Research, Vols. 79-82, pp. 1463-1466, 2009
Online since
August 2009
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Yan Jun Wang, Bin Wang, Li Ying Yang, Shou Ren Wang
Abstract:High speed steel based ceramic preforms with three-dimensionally interpenetrated micropores were fabricated using the mixture of TiH2, CaCO3...
625
Authors: Xian Liang Zhou, Duo Sheng Li, Ai Hua Zou, Xiao Zhen Hua, Zhi Guo Ye, Qing Jun Chen
New Functional Materials
Abstract:SiCp/Al composites were fabricated by ceramic mold freedom infiltration and pressureless infiltration, respectively. The microstructure and...
658
Authors: Shi Zhong Wei, Liu Jie Xu, Guo Shang Zhang, Ji Wen Li, Bao Zhu Dai
Chapter 3: Advanced Manufacturing Technology
Abstract:Mo-based composites with Al2O3 particles were developed in order to enhance the wear resistance of molybdenum alloys....
467
Authors: Zhu Rui, Yu Tao Zhao, Song Li Zhang, Zhi Hong Jia
Chapter 1: Non-Ferrous Metal Material
Abstract:Abstract:Aluminum matrx composites reinforced by in situ ZrB2 particles are fabricated from A356-AlB-K2ZrF6 system via in-situ melt reaction...
122
Authors: Dong Chen, Zhe Chen, Peng Zhang, Yi Jie Zhang, Haiheng Ma, Hao Wei Wang
Chapter 5: Metal Alloy Materials
Abstract:In-situ TiB2 particles reinforced AA7055 composites were fabricated through mixed-salts route and their bending properties were...
1005