Paper Title:
Study on the Feasibility of Bacterial Cellulose as Tissue Engineering Scaffold
  Abstract

OBJECTIVE: As a kind of nanometer natural material, bacterial cellulose (BC) has been widely used in the field of food processing, paper making, pharmaceutical science, etc. In recent years, it is found that there is a good application potentiality of BC used in the medical science, especially in the field of regeneration medicine. There are some reports about BC being used in tissue engineering. It is of great necessity to investigate its tissue compatibility. In this research, the cell compatibility of BC was studied by using the method of cell-culturing combined with rat adipose- derived stem cells (ADSCs) as the seed cells. MATERIAL and METHODS: BC membranes were prepared by Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin University of Science and Technology. The average pore size and porosity of it were 0.8-3.5μm and 93%, respectively. The ADSCs were isolated from the fat pad located in pars inguinalis of 3-weeks Wistar rats by using type II collagenase and then cultured using DMED medium contained 10% new-born calf serum. The status of cell growth was observed everyday. The cell growth curve was determined by MTT method and stem cell phenotype was identified by flow cytometry. Cells in exponential phase of growth were planted on the surface of BC membrane which had been sterilized beforehand by steam at 121°C for 20 min at cell density of 3.0×105cells/mL. The cell-BC compound was cultured by using DMED medium contained 10% new-born calf serum. The growth status and the biological characterization of ADSCs cultured on the BC were determined at different culture time. RESULTS: Most ADSCs primary cultured in vitro showed fusiform shape when they were cultured for 72 hours. The amount of the cells increased along with the culture time and confluenced at 7 days. The exponential phase of growth of primary cultured ADSCs in vitro appeared when they were cultured for 3 to 9 days. The result of flow cytometry showed that ADSCs could express the stem cell symbol. The portait section of cell-BC compound were made after 10 days cultured in vitro. It was shown that ADSCs compact grew on the surface of BC. CONCLUSION: It is indicated that ADSCs grew on the BC membrane still retain the biological activity of stem cell and BC has good biocompatibility. It might be further studied for BC as tissue engineering scaffold.

  Info
Periodical
Advanced Materials Research (Volumes 79-82)
Edited by
Yansheng Yin and Xin Wang
Pages
147-150
DOI
10.4028/www.scientific.net/AMR.79-82.147
Citation
P. Wang, Y. Shi, Y. Y. Jia, J. T. Zheng, Z. L. Wang, Y. Y. Chen, Y. L. Zhou, "Study on the Feasibility of Bacterial Cellulose as Tissue Engineering Scaffold", Advanced Materials Research, Vols. 79-82, pp. 147-150, 2009
Online since
August 2009
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: F.F. Rahman, William Bonfield, Ruth Cameron, M.P. Patel, M. Braden, G. Pearson, S.M. Tavakoli
513
Authors: Hee Song, Soo Ryong Kim, S.J. Jung, J.K. Lee, Hee Joong Kim, Y. Kim
Abstract:Silicon containing self setting bone cement has been prepared by adding silicon containing hydroxyapatite whisker to obtain a biomaterial...
169
Authors: Yi Man, Yi Li Qu, Peng Wang, Zhi Qing Chen, Ping Gong, Min Zhang, Jian Guo Zhu, Qiang Chen, Kun Tian, Yong Mei Ye, Lin Niu, Xia Deng, Rong Rong Nie
Abstract:To study the biomimetic mineralization behaviour of piezoelectric pulp-cap films, bioelectret chitosan films were prepared by polarization...
1707
Authors: Yong Bo Lin, Hong Chen, Li Ran Yue
Abstract:This study has investigated the effects of K2HPO4 to the cell growth and hydrogen production ration to Biohydrogenbacterium R3 sp.nov.. The...
1806
Authors: Yi Feng Zhu, Jing Neng, Lei Lei He, Hua Dong Tang
Polymer Materials
Abstract:A new selenium-containing curcumin polymer was synthesized by polycondensation of curcumin with dihydride, polyethylene glycol, and selenium...
1061