Paper Title:
Effect of Rolling Speed on Deformability and Microstructure in Rolling of AZ31B Magnesium Alloy
  Abstract

Magnesium alloys are expected to be used widely as structural materials because of their lowest density (1.8g/cm3) among all practical alloys and superior specific strength. However, magnesium alloys exhibit poor ductility due to its hcp structure and inactiveness of non-basal slip systems below 523K. Accordingly, magnesium alloy sheets had to be rolled at elevated temperature to avoid edge cracking and fracture during rolling. The present authors succeeded in single pass large draught rolling of AZ31 magnesium alloy sheets below 473K without heating rolls by rolling at the speed higher than 1000m/min. The rolled and quenched sheets had fine recrystallized microstructure and exhibited excellent mechanical properties. It was found that the high speed rolling is a promising method not only for increasing productivity but also for controlling microstructures and improving mechanical properties. If the above mentioned advantages of high speed rolling can be drawn from the rolling at the speed lower than 1000m/min, it is possible to mass-produce magnesium alloy sheets having superior mechanical properties at lower cost. In this study, we tried to determine the lower limiting rolling speed at which we can obtain advantages of high speed rolling. We revealed that the thickness could be reduced about 60% by single pass operation even at 250m/min without heating rolls. The rolled and quenched sheets had equiaxed fine recrystallized microstructure. For example, the mean grain size of 2.1m was obtained in the AZ31B sheet rolled at 250m/min at room temperature to the reduction of 60%.

  Info
Periodical
Advanced Materials Research (Volumes 89-91)
Edited by
T. Chandra, N. Wanderka, W. Reimers , M. Ionescu
Pages
227-231
DOI
10.4028/www.scientific.net/AMR.89-91.227
Citation
G. Hamada, T. Sakai, H. Utsunomiya, "Effect of Rolling Speed on Deformability and Microstructure in Rolling of AZ31B Magnesium Alloy", Advanced Materials Research, Vols. 89-91, pp. 227-231, 2010
Online since
January 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Zhi Min Zhang, Qiang Wang, B.C. Li, X. Zhang
Abstract:Warm compression tests of AZ31 Mg alloy were carried out at five temperatures in 30°C intervals from 210°C to 330°C. The samples of...
1813
Authors: M. Kolář, Vladivoj Očenášek, J. Uhlíř, Ivana Stulíková, Bohumil Smola, Martin Vlach, V. Neubert, K. Šperlink
Abstract:The influence of plastic deformation and heat-treatment on the precipitation of Al3(Sc, Zr) particles and the effect of these precipitates...
357
Authors: Xiao Ping Luo, Lan Ting Xia, Ming Gang Zhang
Abstract:The effect of Cd and Sb addition on the microstructural and mechanical properties of as-cast AZ31 alloys was investigated and compared. The...
197
Authors: Yang An, Peter Hodgson, Chun Hui Yang
Abstract:To determine the relations between rolling passes, mechanical behaviours and microstructure evolution of AA7050 aluminum alloys, finite...
145
Authors: Qing Feng Zhu, Jia Wang, Lei Li, Chun Yan Ban, Zhi Hao Zhao, Jian Zhong Cui
Chapter 4: Metal Plasticity and Forming
Abstract:The effects of final forging temperatures on deformability and structure evolution of high purity aluminum during multi-directional forging...
371