Paper Title:
Numerical Simulation of Residual Thermal Stresses in AA7050 Alloy during DC-Casting Using ALSIM5
  Abstract

Non-homogenous cooling rates and solidification conditions during DC-casting of high strength aluminum alloys result in the formation and accumulation of residual thermal stresses with different signs and magnitudes in different locations of the billet. Rapid propagation of micro-cracks in the presence of thermal stresses can lead to catastrophic failure in the solid state, which is called cold cracking. Numerical models can simulate the thermomechanical behavior of an ingot during casting and after solidification and reveal the critical cooling conditions that result in catastrophic failure, provided that the constitutive parameters of the material represent genuine as-cast properties. Simulation of residual thermal stresses of an AA7050 alloy during DC-casting by means of ALSIM5 showed that in the steady-state conditions large compressive stresses formed near the surface of the billet in the circumferential direction. Stresses changed sign on moving towards the centre of the billet and became tensile with high magnitudes in radial and transverse directions, which made the alloy prone to hot and cold cracking.

  Info
Periodical
Advanced Materials Research (Volumes 89-91)
Edited by
T. Chandra, N. Wanderka, W. Reimers , M. Ionescu
Pages
319-324
DOI
10.4028/www.scientific.net/AMR.89-91.319
Citation
M. Lalpoor, D. G. Eskin, L. Katgerman, "Numerical Simulation of Residual Thermal Stresses in AA7050 Alloy during DC-Casting Using ALSIM5", Advanced Materials Research, Vols. 89-91, pp. 319-324, 2010
Online since
January 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Dmitry G. Eskin, Laurens Katgerman
Abstract:This review paper summarizes the results of recent studies on different mechanisms of macrosegregation upon direct-chill (DC) casting of...
193
Authors: Mehdi Lalpoor, Dmitry G. Eskin, Hallvard Gustav Fjær, Andreas Ten Cate, Nick Ontijt, Laurens Katgerman
Abstract:Direct chill (DC) casting of high strength 7xxx series aluminum alloys is difficult mainly due to solidification cracking (hot cracks) and...
1432
Authors: Jiao Cheng Ma, Hui Zhao Sun, Xue Bin Wang, Xia Lv
Chapter 1: Metal Materials
Abstract:In order to more accurate simulation the solidification of billet continuous casting. The measured shell thickness and surface temperature...
81
Authors: Laurens Katgerman, Dmitry G. Eskin
Chapter 1: Invited Lectures
Abstract:Research activities on aluminium production technology focus on the successive steps in the production chain of aluminium wrought products....
43
Authors: Wen Yu Ma, Bao Yu Wang, Jing Zhou, Qiao Yun Li
II. Advanced Manufacturing Technology and Processes
Abstract:The aim of this paper is to determine whether the train axle cross wedge rolling(CWR) using square billet as blank is available or not. Based...
406