Paper Title:
The History, Challenges and the Future of Biodegradable Metal Implants
  Abstract

New interest in magnesium alloys as temporary biomaterials was reborn in the recent years. Especially metals based on physiological trace elements seem to be promising as an alternative to current biodegradable implant materials in cardiovascular and musculoskeletal applications. First clinical reports can be dated back before 1900. Magnesium alloys were used by surgeons of different clinical background in cardiovascular, neural, skin, general and musculoskeletal surgery. All patients have benefited from the treatment with magnesium alloys, although rapid corrosion caused sometimes painless subcutaneous gas cavities. These reports encouraged researchers to study and invent new magnesium alloys which aim to provide more uniform and slow corrosion rates. The most challenging part was to analyze the corrosion of implanted magnesium alloys in-vivo, since the magnesium alloys interlock with the surrounding tissue during corrosion. Therefore, the implanted samples could not be retrieved without damaging the fragile implant-tissue interface. Synchrotron-radiation based microtomography (SRµCT) was introduced as a solution to this challenge. SRµCT enables to measure non-destructively the in-vivo corrosion rates of magnesium alloys as well as their corrosion morphology. Based on these data, it was concluded that suitable magnesium implants should provide small grains, which are distributed very homogenously and should be produced with highest purity. The future of biodegradable magnesium alloys might be directed towards implant areas where high ductility, maximal tensile strength as well as high compression strength is needed and the properties of current biodegradable implant-materials are exceeded by the properties of magnesium alloys.

  Info
Periodical
Edited by
Amir Eliezer
Pages
3-7
DOI
10.4028/www.scientific.net/AMR.95.3
Citation
F. Witte, A. Eliezer, S. Cohen, "The History, Challenges and the Future of Biodegradable Metal Implants", Advanced Materials Research, Vol. 95, pp. 3-7, 2010
Online since
January 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Zhen Tao Yu, Lian Zhou, Lijuan Luo, Maohong Fan, Yanyan Fu
Abstract:The effects of alloying elements such as Mo, Sn, Zr, Nb, deforming-rate, solid solution and aging treatment on mechanical property and...
595
Authors: Jeong Min Kim, Bong Koo Park, Joong Hwan Jun, Ki Tae Kim, Woon Jae Jung
Abstract:Small amounts of minor alloying elements such as RE and Sr were added to Mg- 8wt%Al-5wt%Zn (AZ91D+4%Zn), and their effects on the...
374
Authors: Zhen Tao Yu, Gui Wang, Xi Qun Ma, Matthew S. Dargusch, Jian Ye Han, Sen Yu
Abstract:The effects of alloy chemistry and heat treatment on the microstructure and mechanical properties of Ti-Nb-Zr-Mo-Sn near  type titanium...
303
Authors: Xiao Ping Luo, Lan Ting Xia, Ming Gang Zhang
Abstract:The effect of Cd and Sb addition on the microstructural and mechanical properties of as-cast AZ31 alloys was investigated and compared. The...
197
Authors: Yong Hua Li, Xin Jun Liang, Tao Fan
Abstract:Biomedical titanium alloys can be used for replacement and repair surgeries of human hard tissues. In recent years, the new b type titanium...
2009