Paper Title:
Residual Stress Relaxation and Microstructure in ZnO Thin Films
  Abstract

Stability under normal environmental conditions over a long period of time is crucial for sustainable thin-film device performance. Pure ZnO films with thicknesses in the 140 - 450 nm range were deposited on amorphous glass microscope slides and (100)-oriented single crystal silicon wafers by radio frequency magnetron sputtering. The depositions were performed at a starting temperature of 200 oC. ZnO films had a columnar microstructure strongly textured along the <0002> direction. XRD peak-shift analysis revealed that the films were under residual, compressive, in-plane stress of -5.46 GPa for the glass substrate and -6.69 GPa for the Si substrate. These residual stresses could be completely relaxed by thermal annealing in air. When left under normal environmental condition over an extended period of time the films failed under buckling leading to extensive cracking of the films. The XRD and SEM results indicated different mechanisms of stress relaxation that were favored in the ZnO thin films depending on the energy provided. Although thermal annealing eliminated residual stresses, serious micro-structural damage upon annealing was observed. Thermal annealing also led to preferential growth of some ZnO crystals in the films. This kind of behavior is believed to be indicative of stress-induced directional diffusion of ZnO. It appears that for the extended stability of the films, the stresses have to be eliminated during deposition.

  Info
Periodical
Edited by
P. VINCENZINI
Pages
1316-1321
DOI
10.4028/www.scientific.net/AST.45.1316
Citation
I. Ozen, M. A. Gülgün, "Residual Stress Relaxation and Microstructure in ZnO Thin Films ", Advances in Science and Technology, Vol. 45, pp. 1316-1321, 2006
Online since
October 2006
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Ryusuke Nakamura, Takehiro Shudo, Akihiko Hirata, Manabu Ishimaru, Hideo Nakajima
Abstract:Formation behavior of nanovoids during the annealing of amorphous Al2O3 and WO3 was studied by transmission...
541
Authors: Jian Sheng Xie, Ping Luan, Jin Hua Li
Chapter 9: Composite Materials II
Abstract:Using magnetron sputtering technology, the CuInSi nanocomposite thin films were prepared by multilayer synthesized method. The structure of...
2770
Authors: Ching Fang Tseng, Yun Pin Lu, Hsin Han Tung, Pai Chuan Yang
Chapter 3: Electrical, Magnetic and Optical Ceramics
Abstract:This paper describes physical properties of (Ca0.8Sr0.2)TiO3 were deposited by sol-gel method with a fix per-heating temperature of 400oC for...
1171
Authors: Omar Abbes, Feng Xu, Alain Portavoce, Christophe Girardeaux, Khalid Hoummada, Vinh Le Thanh
Chapter 8: Diffusion in Electronic Materials
Abstract:An alternative solution for producing logic devices in microelectronics is spintronics (SPIN TRansport electrONICS). It relies on the fact...
439
Authors: Tai Long Gui, Si Da Jiang, Chun Cheng Ban, Jia Qing Liu
Chapter 2:Advanced Material Science and Technology
Abstract:AlN dielectric thin films were deposited on N type Si(100) substrate by reactive radio frequency magnetron sputtering that directly...
409