Paper Title:
Guided Bone Engineering: Healing of Large Bone Defects
  Abstract

Tissue engineering (TE) aims/seeks to achieve the substitution of organ transplantation by the creation of living, functional tissues. It has been suggested that biocompatible porous materials (scaffolds) and a controllable 3D environment are required to aid in the 3D cell organisation and their development into functional tissue. Our research envisions a TE-approach towards the repair of large, load bearing defects in long bones. In vitro standardised, systematic, quantitative screening of potential bone scaffolds is required to understand how scaffolds can affect cell behaviour. This screening will avoid a trial-and-error approach and thus limit the number of animal experiments. Such a screening should be based on the knowledge of mechanical, physical and (bio)chemical scaffold properties and their interaction with cell behaviour. In addition, the design and production of a clinically relevant scaffold requires control over its mechanical behaviour and a new approach for cell seeding in a 3D scaffold, as well as providing nutrition for the engrafted cells. The objective of this research is to gain substantial knowledge about guided bone regeneration and to develop quantitative methodologies that can lead to consistent and reproducible bone regeneration.

  Info
Periodical
Edited by
P. VINCENZINI and R. GIARDINO
Pages
181-188
DOI
10.4028/www.scientific.net/AST.49.181
Citation
J. Schrooten, T. Van Cleynenbreugel, S. Impens, J. Luyten, A. Bakker, J. Vander Sloten, F. P. Luyten, "Guided Bone Engineering: Healing of Large Bone Defects", Advances in Science and Technology, Vol. 49, pp. 181-188, 2006
Online since
October 2006
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: B. Niechoda, M. Gianoutsos, Yong Ning Yu, W.R. Walsh
663
Authors: Suk Young Kim, Chang Kuk You, Jae Ho Jeong, Eui Kyun Park, Shin Yoon Kim, Hong In Shin
Abstract:As a part of the efforts to develop a suitable scaffold optimizing bone regeneration that has similar physical properties to bone, we...
631
Authors: Jick Soo Jhun, Hui Suk Yun, Eui Kyun Park, Hong In Shin
Abstract:To improve the efficiency of osteogenic repair, we compared 3 types of round granular bone substitutes composed of hydroxyapatite (HA) in a...
143
Authors: Jayachandran Venkatesan, Se Kwon Kim
Chapter 4: Ceramic Materials / Superconducting Materials
Abstract:In the recent years, significant developments have been achieved with chitosan and hydroxyapatite (HAp) scaffolds for bone tissue...
212
Authors: Maiko Miura, Jun Fukasawa, Yumiko Yasutomi, Haruka Maehashi, Tomokazu Matsuura, Mamoru Aizawa
VI. Cell Studies and Cell-Material Interactions
Abstract:We have successfully developed porous apatite-fiber scaffolds (AFSs) which have three-dimensional (3D) inter-connected pores; subsequently,...
397