Paper Title:
Dielectric Elastomer Actuators as Elements of Active Vibration Control Systems
  Abstract

Dielectric elastomer actuators (DEA) are a new class of actuators, exhibiting electric field-induced strains. Upon electrical stimulation they can provide large strains and consequently electrical forces. These abilities along with their high compliance make them candidates for active vibration control. This parer presents a general framework for the usage of DEA as elements of active vibration control systems. The electrical and mechanical model of the DEA and a basic control law, for varying the voltage, is reviewed. The basic idea is to reduce the acceleration of the vibrating equipment when the system approaches its equilibrium. The application of the actuator in a single-dof-mass-spring system is modeled. The results with and without control are presented and show the large capabilities of the actuator to suppress the vibrations induced by an external force. DEA has viscoelastic properties, which can further increase the damping capabilities of the vibration absorber but on the other hand produce a time delay, which must be taken into account. Furthermore, the technological issues arisen -structure of the actuator, power and equipment needs, effect of prestrain and frequency, distributed actuation- are discussed.

  Info
Periodical
Edited by
Pietro VINCENZINI, Yoseph BAR-COHEN and Federico CARPI
Pages
103-111
DOI
10.4028/www.scientific.net/AST.61.103
Citation
F. G. Papaspiridis, I.A. Antoniadis, "Dielectric Elastomer Actuators as Elements of Active Vibration Control Systems", Advances in Science and Technology, Vol. 61, pp. 103-111, 2008
Online since
September 2008
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Federico Carpi, Gabriele Frediani, Andrea Mannini, Danilo De Rossi
Abstract:Dielectric elastomer (DE) actuators are able to typically show significant electromechanical performances, which make this electroactive...
186
Authors: Hristiyan Stoyanov, Guggi Kofod, Reimund Gerhard
Abstract:Dielectric elastomer actuators based on Maxwell-stress induced deformation, are considered for many potential applications where high...
81
Authors: Peter Sommer-Larsen, Kim Hansen, Mohamed Benslimane
Abstract:Dielectric elastomer actuators with smart compliant electrodes (DESCE) combine position sensing and actuation in one macroscopic and...
169
Authors: Jana Kovářová, Miloš Schlegel, Jan Dupal
Abstract:The paper deals with the vibration suppressing of cantilever beam. The state feedback control law is used, where the controller and observer...
215
Authors: Shahab Amelian, Hamid R. Koofigar
Abstract:Piezoelectric materials are used in various applications as active vibration control, fault detection in structures and piezoelectric...
1237