Paper Title:
Modelling Multi-Cracking in Thin Films during Constrained Sintering Using Anisotropic Constitutive Law and Material Point Method
  Abstract

The sintering of thin films is widely used for surface coatings and because of its technological importance has generated extensive research interest. During the sintering process, the thin film is constrained by the substrate, which generates considerably high levels of stresses. Crackings are often observed and are considered as one of the major problems of the surface coating technique. This paper has proposed a new numerical method in order to tackle the traditional difficulties in simulating multi-crackings during constrained sintering. Main features of the present method include: (i) the material data is represented by an anisotropic constitutive law, (ii) a new numerical scheme is developed for the crack initialization and growth based on the material point method, (iii) the 3D viscous film shrinkage model is solved by using a dynamic FE scheme, and (iv) the random nature of the initial green body density is represented by statistical variabilities. It is shown that the model proposed by the present paper is capable for the nucleation and propagation of multi-cracks in a straightforward manner. Cracking patterns are shown to be consistent with experimental understandings. The focus of the paper is on the numerical issues and demonstrating the capacity of the model.

  Info
Periodical
Edited by
Pietro VINCENZINI and Jean-François BAUMARD
Pages
191-196
DOI
10.4028/www.scientific.net/AST.62.191
Citation
F. Li, J. Z. Pan, "Modelling Multi-Cracking in Thin Films during Constrained Sintering Using Anisotropic Constitutive Law and Material Point Method", Advances in Science and Technology, Vol. 62, pp. 191-196, 2010
Online since
October 2010
Authors
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Lyudmila Ryabicheva, Dmytro Usatyuk
Abstract:A new mathematical simulation technique for physico-mechanical properties of multicomponent powder materials is proposed in this paper. The...
397
Authors: Hai Peng Jia, Chun Dong Jiang, Guo Ping Li, Run Qing Mu, Bo Liu, Chun Bo Jiang
978
Authors: Yao Liu, Shi Ying Wang, Gang Ya
Abstract:In the process of the ultrasonic machining, the machining efficiency is affected directly by material removal rate. In the paper, the...
908
Authors: Jonghun Yoon, Oana Cazacu, Jung Hwan Lee
Damage, Fracture and Fatigue
Abstract:In spite of this progress in predicting ductile failure, the development of macroscopic yield criteria for describing damage evolution in HCP...
164