Paper Title:
Materials Performance in Advanced Steam Cycle and in Oxy-Fuel Combustion Systems
  Abstract

The U.S. Department of Energy (DOE) Office of Fossil Energy is intensely promoting research and development of materials for advanced steam cycle systems and for oxy-fuel combustion systems. At Argonne National Laboratory, we have conducted studies to evaluate the corrosion performance of candidate structural alloys in coal-ash and in steam environments, in support of advanced steam cycle systems. The laboratory tests simulate the combustion atmosphere of advanced steam-cycle systems and three deposit chemistries that included ash constituents, alkali sulfates, and NaCl. Corrosion rate data will be presented for several Fe- and Ni-base alloys along with the mechanistic understanding of the corrosion processes. In the study on materials for oxy-fuel applications, we have evaluated the corrosion performance of the materials in CO2, steam, and in steam-CO2 mixtures. Materials selected for the study include intermediate-chromium ferritic steels, Fe-Cr-Ni heat-resistant alloys, and nickel-based superalloys. Information will be presented for materials exposed at temperatures between 650 and 950°C for times up to 10,000 h. In the ongoing experiments, we have incorporated low levels of sulfur and chlorine compounds (in addition to CO2 and steam) in the exposure environment to establish the role of second/third reactant on the scaling, internal penetration, and long term performance of the structural alloys.

  Info
Periodical
Edited by
Pietro VINCENZINI, Cynthia POWELL, Marco VITTORI ANTISARI, Vincenzo ANTONUCCI and Fausto CROCE
Pages
1-11
DOI
10.4028/www.scientific.net/AST.72.1
Citation
K. Natesan, Z. T. Zeng, "Materials Performance in Advanced Steam Cycle and in Oxy-Fuel Combustion Systems", Advances in Science and Technology, Vol. 72, pp. 1-11, 2010
Online since
October 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Rabindra Mahapatra, A.W. Davis
Abstract:In this paper we report the oxidation behavior of Rh-xTi (x = 15 & 20 atomic percent) alloys isothermally exposed in air between 1000 and...
721
Authors: X.J. Zhang, Yan Niu
Abstract:Small amounts of silver have been added to the intermetallic compound β-NiAl for the purpose of improving its mechanical properties. Four...
775
Authors: Amanda L. Bowles, Hajo Dieringa, Carsten Blawert, Norbert Hort, Karl Ulrich Kainer
135
Authors: Jeong Min Kim, Bong Koo Park, Joong Hwan Jun, Ki Tae Kim, Woon Jae Jung
Abstract:Small amounts of minor alloying elements such as RE and Sr were added to Mg- 8wt%Al-5wt%Zn (AZ91D+4%Zn), and their effects on the...
374
Authors: Shang Ming He, Xiao Qin Zeng, Li Ming Peng, Xin Wu Guo, Jian Wei Chang, Wen Jiang Ding
Abstract:The microstructure, mechanical properties, creep and corrosion resistance of Mg-Gd-Y-Zr(-Ca) alloys were studied. Small additions of 0.4-0.6...
101