Paper Title:
High Temperature Water Electrolysis Using Metal Supported Solid Oxide Electrolyser Cells (SOEC)
  Abstract

Metal supported cells as developed at DLR for use as solid oxide fuel cells by applying plasma deposition technologies were investigated in operation of high temperature steam electrolysis. The cells consisted of a porous ferritic steel support, a diffusion barrier layer, a Ni/YSZ fuel electrode, a YSZ electrolyte and a LSCF oxygen electrode. During fuel cell and electrolysis operation the cells were electrochemically characterised by means of i-V characteristics and electrochemical impedance spectroscopy measurements including a long-term test over 2000 hours. The results of electrochemical performance and long-term durability tests of both single cells and single repeating units (cell including metallic interconnect) are reported. During electrolysis operation at an operating temperature of 850 °C a cell voltage of 1.28 V was achieved at a current density of -1.0 A cm-2; at 800 °C the cell voltage was 1.40 V at the same operating conditions. The impedance spectra revealed a significantly enhanced polarisation resistance during electrolysis operation compared to fuel cell operation which was mainly attributed to the hydrogen electrode. During a long-term test run of a single cell over 2000 hours a degradation rate of 3.2% per 1000 hours was observed for operation with steam content of 43% at 800 °C and a current density of -0.3 Acm-2. Testing of a single repeating unit proved that a good contacting of cell and metallic interconnect is of major importance to achieve good performance. A test run over nearly 1000 hours showed a remarkably low degradation rate.

  Info
Periodical
Edited by
Pietro VINCENZINI, Cynthia POWELL, Marco VITTORI ANTISARI, Vincenzo ANTONUCCI and Fausto CROCE
Pages
135-143
DOI
10.4028/www.scientific.net/AST.72.135
Citation
G. Schiller, A. Ansar, O. Patz, "High Temperature Water Electrolysis Using Metal Supported Solid Oxide Electrolyser Cells (SOEC)", Advances in Science and Technology, Vol. 72, pp. 135-143, 2010
Online since
October 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Thanganathan Uma, Masayuki Nogami
Abstract:Sol-gel derived high proton conducting P2O5-SiO2-PMA (phosphomolybdic acid, H3PMo12O40 nH2O) glasses as electrolyte were used for the H2/O2...
149
Authors: Go Hiramatsu, Yoshihiro Hirata, Soichiro Sameshima, Naoki Matsunaga
Abstract:Gd-doped ceria electrolyte (Ce0.8Gd0.2O1.9, GDC, 700 μm thick), 30 vol% Ni-GDC cermet anode and perovskite cathode La0.6Sr0.4CoO3 (LSC) or...
985
Authors: Zhen Lin, Chang Hui Wang, Yu Liu
Abstract:A simple model specific to static water feed solid polymer electrolyte (SPE) water electrolysis cell is constructed containing Butler-Volmer...
750
Authors: Hui He, Peng Tao Sun, You Sheng Xu
Chapter 6: Surface Technology
Abstract:In this paper, a three-dimensional, complex seepage model of a proton exchange membrane fuel cell (PEMFC) is studied, the corresponding...
1972
Authors: Jing Yi Chang, Yean Der Kuan, Chih Hsun Yao, Sheng Ching Chan
Chapter 1: Green Building
Abstract:During the average fifty or sixty years of building lifecycles, large amounts of energies are consumed at all stages, from the production of...
51