Paper Title:
Influence of Annealing Environment and Film Thickness on the Phase Formation in the Ti/Si(100) and (Ti +Si)/Si(100) Thin Film Systems
  Abstract

Influence of an annealing environment and film thickness on the phase formation in the Ti(30 nm)/Si(100), [(Ti+Si) 200 nm]/Si(100) thin film systems produced by magnetron sputtering and the Ti(200 nm)/Si(100) thin film system produced by electron-beam sputtering were investigated by X-ray and electron diffraction, Auger electron spectroscopy (AES), secondary ion mass-spectrometry (SIMS) and resistivity measurements. Solid-state reactions in the thin film systems under investigation were caused by diffusion processes during annealing in the different gas environments: under vacuum of 10-4 - 10-7 Pa, flow of nitrogen and hydrogen. It is shown that the decrease of Ti layer thickness from 200 to 30 nm in the Ti/Si(100) film system causes the increase of the transition temperature of the metastable C49 TiSi2 phase to the stable C54 TiSi2 phase up to 1070 K at vacuum annealing. During annealing in the nitrogen flow of the Ti(30 nm)/Si(100) thin film system the C49 TiSi2 is the first crystal phase which is formed at 870 K. For annealings of the [(Ti+Si) 200 nm]/Si(100) thin film system by impulse heating method or for furnace annealings in inert gas atmosphere of N2, Ar, H or higher vacuum (10-5 Pa) the crystallization process has two stages: the first metastable C49 TiSi2 phase is formed at 870 K and then at higher temperatures it is transformed to the stable C54 TiSi2 phase.

  Info
Periodical
Edited by
D. L. Beke, Z. Erdélyi and I. A. Szabó
Pages
159-162
DOI
10.4028/www.scientific.net/DDF.264.159
Citation
Y.N. Makogon, O.P. Pavlova, S. I. Sidorenko, G. Beddies, A.V. Mogilatenko, "Influence of Annealing Environment and Film Thickness on the Phase Formation in the Ti/Si(100) and (Ti +Si)/Si(100) Thin Film Systems ", Defect and Diffusion Forum, Vol. 264, pp. 159-162, 2007
Online since
April 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Z. Stokłosa, G. Badura, P. Kwapuliński, Józef Rasek, G. Haneczok, Józef Lelątko, Lucjan Pająk
Abstract:The crystallization and optimization of magnetic properties effects in FeXSiB (X=Cu, V, Co, Zr, Nb) amorphous alloys were studied by...
171
Authors: Ryusuke Nakamura, Takehiro Shudo, Akihiko Hirata, Manabu Ishimaru, Hideo Nakajima
Abstract:Formation behavior of nanovoids during the annealing of amorphous Al2O3 and WO3 was studied by transmission...
541
Authors: Jian Sheng Xie, Ping Luan, Jin Hua Li
Chapter 9: Composite Materials II
Abstract:Using magnetron sputtering technology, the CuInSi nanocomposite thin films were prepared by multilayer synthesized method. The structure of...
2770
Authors: Ching Fang Tseng, Yun Pin Lu, Hsin Han Tung, Pai Chuan Yang
Chapter 3: Electrical, Magnetic and Optical Ceramics
Abstract:This paper describes physical properties of (Ca0.8Sr0.2)TiO3 were deposited by sol-gel method with a fix per-heating temperature of 400oC for...
1171
Authors: Omar Abbes, Feng Xu, Alain Portavoce, Christophe Girardeaux, Khalid Hoummada, Vinh Le Thanh
Chapter 8: Diffusion in Electronic Materials
Abstract:An alternative solution for producing logic devices in microelectronics is spintronics (SPIN TRansport electrONICS). It relies on the fact...
439