Paper Title:
Diffusion in Bulk Glass Forming Alloys– from the Glass to the Equilibrium Melt
  Abstract

Since the discovery of bulk metallic glasses there has been considerable research effort on these systems, in particular with respect to mass transport. Now the undercooled melt between the melting temperature and the caloric glass transition temperature, which has not been accessible before due to the rapid onset of crystallization, can be investigated and theories can be tested. Here we report on radiotracer diffusion measurements in metallic bulk-glass-forming Pd-Cu-Ni-P alloys. Serial sectioning was performed by grinding and ion-beam sputtering. The time, temperature as well as the mass dependence, expressed in terms of the isotope effect E, of Co-diffusion were investigated. The Co isotope effect measurements, which have never been carried out near Tc in any material, show atomic transport up to the equilibrium melt to be far away from the hydrodynamic regime of uncorrelated binary collisions. In the glassy state as well as in the deeply supercooled state below the critical temperature Tc, where the mode coupling theory predicts a freezing-in of liquid-like motion, the experimentally determined very small isotope effects indicate a highly collective hopping mechanism involving some ten atoms. Below Tc the temperature dependence shows Arrhenius-type behavior with an effective activation enthalpy of 3.2 eV. Above Tc the onset of liquid-like motion is evidenced by a gradual drop of the effective activation energy and by the validity of the Stokes-Einstein equation, which is found to break down below Tc. Although having strong covalent bonding tendencies, Phosphorous diffusion is only slightly slower than Co diffusion, indicating that it does not determine the overall viscosity below Tc. The Stokes-Einstein equation is presently tested for other constituents of the alloy.

  Info
Periodical
Edited by
Y.H. Sohn, C. Campbell, D. Lewis and A. Lupulescu
Pages
109-118
DOI
10.4028/www.scientific.net/DDF.266.109
Citation
K. Rätzke, V. Zöllmer, A. Bartsch, A. Meyer, F. Faupel, "Diffusion in Bulk Glass Forming Alloys– from the Glass to the Equilibrium Melt ", Defect and Diffusion Forum, Vol. 266, pp. 109-118, 2007
Online since
September 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Joanna Dudała, Jolanta Gilewicz-Wolter, Zdzisław Stęgowski
Abstract:The paper presents the application of multitracer method of diffusion measurement in Cr-Mn steels. Two austenitic steels were investigated:...
1199
Authors: Ivo Stloukal, Jiří Čermák
Abstract:Coefficient of 65Zn heterodiffusion in Mg17Al12 intermetallic and in eutectic alloy Mg - 33.4 wt. % Al was measured in the temperature...
189
Authors: Kenji Matsumoto, Yutaka Adachi, Takeshi Ohgaki, Isao Sakaguchi, Tsubasa Nakagawa, Naoki Ohashi, Hajime Haneda
Abstract:Zinc isotopic heterostructured zinc oxide thin films of 64ZnO/68ZnO/64ZnO were synthesized using pulsed laser deposition. The pulsed laser...
193
Authors: D. Prokoshkina, A.O. Rodin, V. Esin
Chapter 3: Nanomaterials and Grain Boundaries
Abstract:The temperature dependence of the bulk diffusion coefficient of Fe in Cu is determined by EDX in the temperature range from 923 to 1273 K, ,...
171
Authors: Renata Abdallah Nogueira, Carlos Roberto Grandini
Abstract:Titanium alloys are favorable implant materials for orthopedic applications, due to their desirable properties such as good corrosion...
702