Paper Title:
Thermal Diffusivity of TiAlNb and AlNi Alloys - The European IMPRESS Project
  Abstract

The thermal diffusivities of some industrially important alloys have been measured as a part of the EU funded Intermetallic Materials Processing in Relation to Earth and Space Solidification (IMPRESS) project which is coordinated by the European Space Agency (ESA). The thermal diffusivities of the alloys were measured by the Laser flash method with a carefully designed gas cleaning system to remove traces of oxygen from the argon atmosphere. In the present work, the thermal diffusivity of TiAlNb (Ti46.1Al45.9Nb8 at %) and AlNi alloy (Al-Ni31.5 at %) alloys have been measured independently at Royal Institute of Technology, Sweden (KTH) and National Physical Laboratory, UK (NPL). The results from both laboratories were consistent, and have been compared with predictions of phase transformation temperatures calculated using Thermo Calc and MTDATA software. Generally the variation of thermal diffusivity appears to be related to the phase transformation. However, one anomaly observed in the present work on TiAlNb was a maximum thermal diffusivity value at about 1100K. No corresponding peak was found for the density, ρ, the specific heat capacity, Cp, or the electrical resistivity, 1/σ, which were also measured as part of the project. In view of the fact that the thermal diffusivity could be related to electrical conductivity by the Wiedemann-Franz law describing electronic contribution to heat conduction, the present results indicate a non-electron contribution. This aspect is being currently investigated further. The recommended thermal diffusivity value of TiAlNb and AlNi alloys were obtained as follows. TiAlNb alloy: α = 3.75+ 5.16 ·10-3T+1.89·10-6 T2 – 2.69·10-9 T3 [10-6 m2 s-1] (293 K < T < 1573 K) AlNi alloy: α = 4.77+ 5.41·10-2T – 7.14·10-5T2 + 2.88·10-8T3 [10-6 m2 / s] (373K

  Info
Periodical
Defect and Diffusion Forum (Volumes 273-276)
Edited by
Andreas Öchsner and Graeme E. Murch
Pages
375-380
DOI
10.4028/www.scientific.net/DDF.273-276.375
Citation
T. Matsushita, L. Chapman, R. Brooks, I. Egry, S. Seetharaman, "Thermal Diffusivity of TiAlNb and AlNi Alloys - The European IMPRESS Project", Defect and Diffusion Forum, Vols. 273-276, pp. 375-380, 2008
Online since
February 2008
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

  | Authors: Atsunori Kamegawa, Toru Iwaki, Masuo Okada
Abstract:Effects of hydrogenation process of the microstructure, electrical conductivity and mechanical properties for the Cu-(1~3) mass%Ti alloys...
1319
Authors: Katarzyna Bałdys, Grzegorz Dercz, Łukasz Madej
Abstract:The ferromagnetic shape memory alloys (FSMA) are relatively the brand new smart materials group. The most interesting issue connected with...
171
Authors: Thangaraju Shanmugasundaram, Martin Heilmaier, V. Subramanya Sarma, B.S Murty
Chapter 5: Microstructure and Properties
Abstract:Bulk nanostructured Al-4Cu alloy was synthesized by high energy ball milling followed by vacuum hot pressing. Its thermal stability was...
234
Authors: Jing Song Wang, Shu You Huang, Li Jun Cao, Hao Yan Sun, Jing Hua Wang, Qing Guo Xue
Abstract:In this paper, the viscosity of molten Zr50Cu50 alloy was measured by using NaF-CaF2 covering slag...
1100
Authors: S.G. Shabestari, R. Gholizadeh
Chapter 2: Forming in Melt or Near Melt Condition
Abstract:Dense precipitation of various intermetallic compounds is a common feature in the microstructure of Al-Si piston alloys. In this...
289