Paper Title:
Diffusion in the Lattice and Interfaces of Real Engineering Materials: A Unified Approach
  Abstract

Engineering materials are commonly polycrystalline in nature and chemically inhomogeneous containing hetero-phases and interfaces. Because diffusion is ubiquitous in dissimilar phases and defects, it plays a vital role in the performance and reliability. During the last several decades, a synergism of the microstructural properties and chemical inhomogeniety with diffusion has been attempted to unify their apparently diverse behavior. We discuss the methodology and the thermodynamical analyses of the diffusion data needed to obtain this synergism quantitatively and illustrate it by the results obtained in a wide variety of materials, both metallic and non-metallic. Investigations carried out in pure polycrystalline metals have yielded grain boundary energies comparable to those directly measured. Furthermore, we discuss the role of solute segregation at grain boundaries and interfaces in alloys in altering diffusion. From the perturbations caused, the solute segregation parameters - the enthalpy and the entropy of binding - have been extracted and levels of solute concentrations estimated. Finally, it is shown that similar analyses when applied to complex materials, e.g. the Pb-Sn eutectic alloy, the Ni3Al intermetallic compound, and an Ag-ceramic system, also result in acceptable values of interface energies and segregation factors.

  Info
Periodical
Edited by
G. B. Kale, M. Sundararaman, G. K. Dey and G. P. Tiwari
Pages
1-12
DOI
10.4028/www.scientific.net/DDF.279.1
Citation
D. Gupta, "Diffusion in the Lattice and Interfaces of Real Engineering Materials: A Unified Approach", Defect and Diffusion Forum, Vol. 279, pp. 1-12, 2008
Online since
August 2008
Authors
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Ivo Stloukal, Jiří Čermák
Abstract:Coefficient of 65Zn heterodiffusion in Mg17Al12 intermetallic and in eutectic alloy Mg - 33.4 wt. % Al was measured in the temperature...
189
Authors: Vladimir V. Popov
Abstract:Possibilities of grain-boundary diffusion and segregation studies using nuclear gammaresonance spectroscopy (NGR) are considered. It is...
497
Authors: Sergiy V. Divinski, Boris S. Bokstein
Abstract:Some unresolved problems of grain boundary diffusion – restrictions of Fisher-Gibbs model, refinement of the conditions for B- and C-regimes,...
1
Authors: D. Prokoshkina, A.O. Rodin, V. Esin
Chapter 3: Nanomaterials and Grain Boundaries
Abstract:The temperature dependence of the bulk diffusion coefficient of Fe in Cu is determined by EDX in the temperature range from 923 to 1273 K, ,...
171
Authors: Renata Abdallah Nogueira, Carlos Roberto Grandini
Abstract:Titanium alloys are favorable implant materials for orthopedic applications, due to their desirable properties such as good corrosion...
702