Paper Title:
Diffusion in Very Dilute Zr-Fe Alloys
  Abstract

The diffusion process in hcp Zr with low amounts of Fe being in solution or forming very dilute Zr-Fe alloys is analysed and discussed. The enhancement of the diffusion coefficient in alloys with increasing amounts of Fe is studied using both experimental and theoretical results. In contraposition with the assumption made in the literature that the Fe in solution in the hcp Zr lattice is the responsible, this enhancement seems to be more related with the total amount of Fe present in the samples. This idea is supported by measurements of Au diffusion in Zr with 50 to 150 gr/gr of Fe which shows increments in the diffusion coefficients even at the lower temperatures where the reported Fe solubility in -Zr is negligible. Ab initio calculations using SIESTA and WIEN2k codes show several stable and meta-stable configurations for the Fe in the hcp Zr lattice in interstitial and off-centre positions, resembling the last ones a Zr3Fe like arrangement. These configurations are used in order to analyze the mechanism of both, self-diffusion enhancement and ultra-fast diffusion of Fe in -Zr.

  Info
Periodical
Defect and Diffusion Forum (Volumes 283-286)
Edited by
Andreas Öchsner, Graeme E. Murch and Ali Shokuhfar
Pages
128-132
DOI
10.4028/www.scientific.net/DDF.283-286.128
Citation
R. A. Pérez, "Diffusion in Very Dilute Zr-Fe Alloys", Defect and Diffusion Forum, Vols. 283-286, pp. 128-132, 2009
Online since
March 2009
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Rodolfo A. Pérez, Patrick Gas, Philippe Maugis
Abstract:Experiments of niobium diffusion at infinite dilution and Nb reaction-diffusion in pure iron and in ferrites with different amounts of...
163
Authors: Hervé Bulou, Christine Goyhenex, Carlo Massobrio
Abstract:This paper highlights the role played by diffusion processes to achieve a better characterization of structure and dynamics in atomic-scale...
244
Authors: D. Prokoshkina, A.O. Rodin, V. Esin
Chapter 3: Nanomaterials and Grain Boundaries
Abstract:The temperature dependence of the bulk diffusion coefficient of Fe in Cu is determined by EDX in the temperature range from 923 to 1273 K, ,...
171
Authors: Renata Abdallah Nogueira, Carlos Roberto Grandini
Abstract:Titanium alloys are favorable implant materials for orthopedic applications, due to their desirable properties such as good corrosion...
702