Paper Title:
Microstructure and Phase Identification of Tertiary Oxide Scale on Steel by EBSD
  Abstract

Oxide scales growing during hot rolling of steel represent an industrial and environmental problem. Tertiary oxide, which starts to form before entering the finishing stands, remains on the steel surface until the end of the process, affecting the final surface quality and the response to downstream processing. Characterizing scale layers and the scale/steel interface in terms of phase morphology, texture, grain structure and chemical composition is fundamental for a better understanding of their behaviour and the effect of thermomechanical cycles on the material response to further processing. Thin tertiary scale layers have been grown on ULC steel under controlled conditions in a laboratory device adequately positioned in a compression-testing machine, immediately before plane strain deformation. After heating under a protective atmosphere (nitrogen), the samples have been oxidized in air at 1050°C for a short oxidation time. Immediately after this controlled oxidation, some of the samples were subjected to plane strain compression (PSC) inside the experimental device, in order to simulate the finishing hot rolling process. Direct observations of oxide scale layers are impossible. The EBSD technique has been identified as a powerful tool that can be used to reveal the microstructure within the oxide scale and to distinguish between its constitutive phases, based on their distinct crystal lattices. The texture of the deformed oxide scales, originally grown on ULC steel, was determined in a SEM using the EBSD technique. This will help to achieve a better understanding of their complex deformation behaviour. Because the substrate deformation affects the oxide layer, orientation relationships between scale layer and substrate were measured and the crystallographic orientation between undeformed and deformed areas was determined. Strongly textured wustite grains with a clearly pronounced columnar structure were observed after oxidation at 1050°C. The detailed EBSD study reveals that the oxide layer is able to accommodate a significant amount of deformation.

  Info
Periodical
Defect and Diffusion Forum (Volumes 283-286)
Edited by
Andreas Öchsner, Graeme E. Murch and Ali Shokuhfar
Pages
419-424
DOI
10.4028/www.scientific.net/DDF.283-286.419
Citation
L. Suarez, P. Rodriguez-Calvillo, R. Colás, Y. Houbaert, "Microstructure and Phase Identification of Tertiary Oxide Scale on Steel by EBSD", Defect and Diffusion Forum, Vols. 283-286, pp. 419-424, 2009
Online since
March 2009
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Pablo Rodriguez-Calvillo, Yvan Houbaert
Abstract:High silicon steel is used for electrical applications because its electrical resistivity is increased and the magnetostriction is reduced....
15
Authors: Yan Li, Xiao Hong Chen, Ping Liu, Lin Hua Gao, Bao Hong Tian
Abstract:The behavior of plastic deformation of Cu-15Cr-0.1Zr in-situ composite under different degree of cold drawing deformation was analyzed by...
2191
Authors: Gui Qing Chen, Gao Sheng Fu, Wen Duan Yan, Chao Zeng Cheng, Ze Chang Zou
Modeling, Analysis and Simulation of Manufacturing Processes
Abstract:The 3003 Al alloy was deformed by isothermal compression in the range of deformation temperature 300-500 °C at strain rate 0.0l-10.0...
306
Authors: Wojciech Wajda, Henryk Paul
Abstract:The paper describes the mechanism of deformation at 77 K of pure aluminum bicrystals of different grain orientations. The following...
108
Authors: Marcin Knapiński, Bartosz Koczurkiewicz, Henryk Dyja, Anna Kawałek, Marcin Kwapisz
VII. Metallic Alloys
Abstract:The requirement for curde oil and natural gas is still increasing. It was observed a growing of interested in the exploration and...
518