Paper Title:
Numerical Study of a Vertical Solidification Process under Magnetic Field in Unsteady State
  Abstract

Numerical computation is achieved in an axisymmetric configuration to analyze the magnetic field effect on thermosolutal convection during vertical solidification of a binary alloy. The bath is exposed to a uniform temperature profile in unsteady state. During the growth three regions appear: liquid, mushy and solid zones. The mushy zone is assimilated to porous medium. A mathematical model of heat, momentum and solute transfer has been developed in primitive variables (pressure-velocity). A single domain approach (enthalpy method) is used to build the equations system. In this context, a computer code has been developed and validated with previous studies. The results in term of stream function and solute concentration show the strong effect of the magnetic field on the fluid flow and on the solutal stratification. The effects of magnetic field and melt convection intensity were demonstrated. The main results show that the quality of highly doped binary alloy crystals can be improved when the growth process occurs at low pulling rates and under a magnetic field.

  Info
Periodical
Defect and Diffusion Forum (Volumes 297-301)
Edited by
Andreas Öchsner, Graeme E. Murch, Ali Shokuhfar and João M.P.Q. Delgado
Pages
254-262
DOI
10.4028/www.scientific.net/DDF.297-301.254
Citation
S. Nouri, M. Benzeghiba, A. Benzaoui, "Numerical Study of a Vertical Solidification Process under Magnetic Field in Unsteady State", Defect and Diffusion Forum, Vols. 297-301, pp. 254-262, 2010
Online since
April 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Sabrina Nouri, Mouhamed Benzeghiba, Ahmed Benzaoui
Abstract:This paper addresses the effect of thermosolutal convection in the formation of defects in directionally solidified alloys. The numerical...
253
Authors: Wei Xu, Jian Xin Zhou, Sheng Yong Pang, Dun Ming Liao, Ya Jun Yin
Modeling, Analysis and Simulation of Manufacturing Processes
Abstract:A simplified mathematical model for describing the solidification processing of fluid flow, heat and solute transfer in binary alloys is...
369