Paper Title:
Rational Reinforcing of the Honeycomb Facets Variable Thickness for Wind Turbine
  Abstract

Decreasing of wind turbine blade weight by using honeycomb sandwich collides with strength lack of the honeycomb facets at the high loaded places of the blade under heavy wind load. For providing tensile and compressive strength profiling of the variable thickness facets was made. By using response surface model based on design space the facets rational thickness distribution was performed by using optimization. The condition of evenly distributed stresses at narrow range of values for reinforced facets was used like state variables for optimum designing. By combining finite element analysis and sequential programming the response of the thickness within the process integration framework on criteria the rationalization of the facets thickness was performed. The facets thickness variations are assigned by polynomial of fifth degree to provide small difference of stresses in the facets for blade. The angles of the glass fiber stacking relatively of the blade axis for mass minimization were selected on the similar stress reinforcement condition for outside and inside facets of the honeycomb sandwich. The structure of the reinforcing was built to coincide the principal stresses and strains of the facets to longitudinal and transversal direction of the blade. Calculation results were obtained for glass fiber -epoxy resin composite material having and shown that decreasing total mass of the blade 19% compare to shape optimization.

  Info
Periodical
Key Engineering Materials (Volumes 261-263)
Edited by
Kikuo Kishimoto, Masanori Kikuchi, Tetsuo Shoji and Masumi Saka
Pages
777-782
DOI
10.4028/www.scientific.net/KEM.261-263.777
Citation
Y. H. Kim, J.D. Kim, V.A. Shuripa, C. Yim, T. G. Park, "Rational Reinforcing of the Honeycomb Facets Variable Thickness for Wind Turbine", Key Engineering Materials, Vols. 261-263, pp. 777-782, 2004
Online since
April 2004
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Zhi Yun Wu, Chun Fang Zhang
Chapter 16: Tooling Testing and Evaluation of Materials
Abstract:The scale application of wind energy conforms to the demand of sustainable development in our country. However, with the blower’s blade...
2586
Authors: Zi Xu Liu, Guang Hui Zhang, Bo Wang, Xue Wei Zhang, Tian Biao Yu, Wan Shan Wang
Chapter 8: New Energy Materials
Abstract:In the article, blade element momentum theory is used for calculated aerodynamic load of blade under the different wind velocities. 3D model...
1790
Authors: Peng Zhan Zhou, Fang Sheng Tan
Chapter 3: Development and Utilization of Wind Energy
Abstract:Based on BLADED software, the aerodynamic performance of a large scale wind turbine blade was analyzed under variable condition. The results...
527
Authors: Tomasz Kik, Marek Slovacek, Jaromir Moravec, Mojmir Vanek
Chapter 4: Welding and Assembly Technologies in Manufacturing
Abstract:Simulation software based on a finite element method have significantly changed the possibilities of determining welding strains and stresses...
443