Paper Title:
Design and Characterization of Microfluidic Analysis System for RNA-Aminoglycoside Interactions
  Abstract

Microfluidic devices are of considerable interest, since such technology offers great promise for the development of powerful and versatile miniaturized analyzers. Accordingly, the present work describes a microfluidic screening system that is composed of a microchip, hydrodynamic pumping unit and fluorescence detectors. To develop an assay for RNA-aminoglycoside interactions, microchips are designed and fabricated on a glass substrate, then flow simulations are performed in the microchannels. After optimizing the flow control and buffer composition for fluorescence-based biochemical assays, a fluorescently labeled aminoglycoside probe and RNA are allowed to flow continuously to the main micro-channel based on hydrodynamic pumping and their interactions monitored by fluorescence quenching, which is reversed upon competition with other aminoglycosides. Consequently, the proposed device can serve as an integrated microfluidic platform for the high-throughput screening of high affinity antibiotics for RNA targets.

  Info
Periodical
Key Engineering Materials (Volumes 277-279)
Edited by
Kwang Hwa Chung, Yong Hyeon Shin, Sue-Nie Park, Hyun Sook Cho, Soon-Ae Yoo, Byung Joo Min, Hyo-Suk Lim and Kyung Hwa Yoo
Pages
90-95
DOI
10.4028/www.scientific.net/KEM.277-279.90
Citation
J. H. Lee, J. M. Jang, H. S. Cho, K. C. Han, T. S. Kim, J. Y. Kang, E. G. Yang, "Design and Characterization of Microfluidic Analysis System for RNA-Aminoglycoside Interactions ", Key Engineering Materials, Vols. 277-279, pp. 90-95, 2005
Online since
January 2005
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Tijjani Adam, U. Hashim, T.S. Dhahi
Abstract:At a macro scale level, mixing is generally achieved by a turbulent flow, which makes possible of segregating the fluid in small domains,...
345
Authors: Jin Xian Wang, Zeng Wen, Song Jing Li
Chapter 4: Advanced Control Research and Application
Abstract:A pneumatic microvalve which can be used in pneumatic pressure control for lab-on-a-chip applications is presented in this paper. In order to...
244