Paper Title:
Calcium Phosphate Bone Cement Preparation Using Mechano-Chemical Process
  Abstract

ACP (amorphous calcium phosphate) and DCPD (dicalcium phosphate dihydrate, or Brushite) powders were high energy dry ball milled at a 1:1 ratio for 1, 2, 3, 4, 10, or 24 hours to produce a variety of powders for use as calcium phosphate cements (CPC). A 1:1 blend of powders not subjected to milling was used as baseline material (control). Physicochemical and mechanical characterization was performed on the powder or cement at each milling time point and compared to control. The following changes were noted after 24 hours of milling: the crystallinity was reduced to a fully amorphous phase, the tap density increased by 89%, the specific surface area decreased by a factor of 7, and the total porosity of hardened cement decreased by 50%. Additionally, the compressive strength of hardened CPC increased from 2.6 MPa to a peak of 50 MPa after 10-h milling. The rate of paste hardening increased throughout the 24-h period. Full conversion of each milled material produced a similar composition low-crystalline calcium deficiency apatite with Ca/P atomic ratio of 1.45 and specific surface area around 195 m2/g. The specific structure of these CPC, with high surface area and reactivity of nano-crystals, is ideal for in vivo remodeling of new bone and controlled release of protein and growth factors.

  Info
Periodical
Key Engineering Materials (Volumes 284-286)
Main Theme
Edited by
Panjian Li, Kai Zhang and Clifford W. Colwell, Jr.
Pages
101-104
DOI
10.4028/www.scientific.net/KEM.284-286.101
Citation
A. Tofighi, R. Palazzolo, "Calcium Phosphate Bone Cement Preparation Using Mechano-Chemical Process", Key Engineering Materials, Vols. 284-286, pp. 101-104, 2005
Online since
April 2005
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Faungchat Thammarakcharoen, Phee Palanuruksa, Jintamai Suwanprateeb
Chapter 1: Materials for Biomedical Application
Abstract:Hydroxyapatite has been used as bone substitutes in many applications due to its biocompatibility and osteoconductivity. Generally, it is...
3
Authors: Tya Indah Arifta, Melvin L. Munar, Kanji Tsuru, Kunio Ishikawa
Chapter 1: Apatites and Calcium Phosphate
Abstract:The aim of present study was to fabricate porous a-tricalcium phosphate (a-TCP) with adequate mechanical strength and pore interconnectivity....
57