Paper Title:
In Vivo Characterisation of a Novel Hydrophilic Composite for Total Intervertebral Disc Substitution
  Abstract

Intervertebral disc (IVD) damage due to degeneration, trauma or inflammation is the main cause for lower back pain leading to morbidity and loss of function of the spinal column. Until recently the state of the art treatment for degenerative disc disease (DDD) was arthrodesis. Developments in vertebral arthroplasty enable degenerated disc to be replaced with prosthetic IVD devices while maintaining motion at the affected part. The ability of the intervertebral device to support the in vivo loading environment is critical for the clinical success of such devices. However, such properties are depended on the location and structure of IVD, as the mechanical properties of IVD change locally [1]. The objective of this study was to evaluate the in vivo tissue compatibility of a novel composite, made with poly 2-hydroxyethyl methacrylate (pHEMA), poly ε-caprolactone (PCL) and poly ethylene terephthalate (PET) in an animal model. In vivo qualitative and quantitative results at 6 weeks post intraosseous implantation in rabbit femur revealed that this hydrogel, in contact with bone tissue, showed no tissue damage at the implant-bone interface. This novel composite disc prosthetic material is biocompatible as bone growth was observed into the implant and there was no evidence of toxicity to bone or inflammatory responses at the peri-implant tissue.

  Info
Periodical
Key Engineering Materials (Volumes 284-286)
Main Theme
Edited by
Panjian Li, Kai Zhang and Clifford W. Colwell, Jr.
Pages
795-798
DOI
10.4028/www.scientific.net/KEM.284-286.795
Citation
E. Damien, F. Causa, L. Ambrosio, P. A. Revell, "In Vivo Characterisation of a Novel Hydrophilic Composite for Total Intervertebral Disc Substitution ", Key Engineering Materials, Vols. 284-286, pp. 795-798, 2005
Online since
April 2005
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Anke Bernstein, Renate Gildenhaar, Doreen Nöbel, Georg Berger
623
Authors: Mitsuru Takemoto, Shunsuke Fujibayashi, Masashi Neo, Kazutaka So, Norihiro Akiyama, Tomiharu Matsushita, Tadashi Kokubo, Takashi Nakamura
Abstract:We have developed a porous titanium implant sintered with spacer particles (porosity = 50 %, average pore size ± standard deviation = 303 ±...
987
Authors: Ana Cristina P. Machado, Marize Varella de Oliveira, Robson Pacheco Pereira, Yasmin R. Carvalho, Carlos Alberto Alves Cairo
Abstract:The osseointegration of porous titanium implants was evaluated in the present work. Implants were fabricated from ASTM grade 2 titanium by a...
179
Authors: G. Daculsi, E. Goyenvalle, E. Aguado
Abstract:It was demonstrated that microstructured surfaces improve cell spreading and bone ingrowth. Particularly, the surface roughness modulates the...
795
Authors: H. Valiense, G.V.O. Fernandes, B. Moura, J. Calasans-Maia, A. Alves, Antonella M. Rossi, J.M. Granjeiro, M. Calasans-Maia
Abstract:The objective of this study was to investigate the bone repair of carbonate apatite (cHA) in comparison to hydroxyapatite (HA, control...
258