Paper Title:
SPS Processing and Superplastic Deformation of Silicon Nitride Based Ceramics
  Abstract

Recently we have introduced a novel processing concept of sialon components implying that an extra liquid phase that is thermodynamically compatible with sialon phases is introduced by increasing the O/N ratio in the general formula (Yb+Y)xSi12-(3x+n)Al3x+nOnN16- n while keeping constant the Yb, Y, Si, and Al proportions. By increasing the oxygen content from its stoichiometric value of 5.16 to 15 eq%, a series of powder mixtures were prepared and their overall compositions are located slightly above the homogeneity region of the a- sialon phase. These compositions were consolidated to full densities by hot pressing (HP) and Spark Plasma Sintering (SPS), respectively. The sintering kinetics in the HP and SPS units is compared. The grain growth kinetics were investigated both by post heat-treatment of SPS pre-consolidated monophasic a-sialon bodies consisting of sub-micron sized equiaxed grains in a conventional graphite furnace using extended holding times (hours) and in the SPS apparatus rapidly heated exceeding the temperature threshold of grain growth and using short holding times (minutes). Post heat treatment in the SPS apparatus yielded in-situ reinforced microstructures no matter if an additional liquid/glass was involved or not while corresponding microstructures could only be obtained for non-stoichiometric compositions by post heat treatment in the graphite furnace. The grain growth kinetics is discussed in terms of static and dynamic ripening mechanisms. We have recently shown that the ductility of covalent bonded silicon nitride based ceramics is dramatically enhanced in presence of a pulsed electric field. Compressive strains rates in the range of 10-2 s-1 can easily be achieved at T ³ 1500oC. The enhanced ductility is explained by that the electric field induces motion of charged species present in the grain boundary glassy/liquid phase that in turn promotes grain sliding along the grain boundaries.

  Info
Periodical
Edited by
Hai-Doo Kim, Hua-Tay Lin and Michael J. Hoffmann
Pages
146-155
DOI
10.4028/www.scientific.net/KEM.287.146
Citation
H. Peng, Z. J. Shen, M. Nygren, "SPS Processing and Superplastic Deformation of Silicon Nitride Based Ceramics", Key Engineering Materials, Vol. 287, pp. 146-155, 2005
Online since
June 2005
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Khiam Aik Khor, Yong Wan Gu, P. Cheang, F.Y.C. Boey
497
Authors: H. Erkalfa, B. Yuksel, T.O. Ozkan
1333
Authors: Won Seung Cho, Yeon Chul Yoo, Chin Myung Whang, Nam Hee Cho, Woon Suk Hwang, Jun Gyu Kim, Young Jae Kwon
Abstract:Porous alumina bodies were successfully prepared by spark plasma sintering of alumina powders with different amounts of graphite, and by...
1056
Authors: Hyeon Taek Son, J.M. Hong, Ik Hyun Oh, Jae Seol Lee, T.S. Kim, Kouichi Maruyama
Abstract:Mg97Zn1Y2 alloy powders were prepared from gas atomization process, followed by consolidation using spark plasma sintering (SPS) process....
1517
Authors: Daisuke Horikawa, Junichi Tatami, Toru Wakihara, Katsutoshi Komeya, Takeshi Meguro
Abstract:HfO2-added Si3N4 ceramics are known to exhibit excellent high-temperature strength and excellent damage characteristics because HfO2 assists...
35