Paper Title:
The Role of Surface Physical Properties on Blood Compatibility of Titanium Oxide Films Synthesized by Unbalanced Magnetron Sputtering
  Abstract

Surface modification has shown great potential for improving the hemocompatibility of biomedical materials and devices. In this paper we describe our work on improving blood compatibility with Ti–O thin films prepared by unbalanced DC magnetron sputtering. The structure and surface chemical and physical properties of the films were characterized by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), SEM, sheet resistance tests, and Hall effect measurements. The sheet resistance of the titanium oxide samples increased with oxygen pressure and shows a sharp increase when only TiO2 exists in the films. The band gap, carrier density and sheet resistance of the titanium oxide films synthesized at different oxygen pressure are different. These properties affect blood compatibility significantly. We suggest that the semiconducting nature of n-type Ti–O films with bandgap 3.0~3.2 eV, sheet resistance greater than 1 Ω.cm and carrier density of about 1.17 x 1016cm-2 leads to their excellent blood compatibility.

  Info
Periodical
Key Engineering Materials (Volumes 288-289)
Edited by
Xingdong Zhang, Junzo Tanaka, Yaoting Yu and Yasuhiko Tabata
Pages
311-314
DOI
10.4028/www.scientific.net/KEM.288-289.311
Citation
Y. X. Leng, P. Yang, J. Y. Chen, L. X. Xu, A. S. Zhao, H. Sun, J. Wang, N. Huang, "The Role of Surface Physical Properties on Blood Compatibility of Titanium Oxide Films Synthesized by Unbalanced Magnetron Sputtering", Key Engineering Materials, Vols. 288-289, pp. 311-314, 2005
Online since
June 2005
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Su Shia Lin, Jow Lay Huang
Abstract:A radio frequency power (rf) was supplied to ZnO target, and a direct current (dc) power was supplied to Al target for the preparation of...
305
Authors: Xiao Long Weng, Wu Tang, Yu Tao Wu, Long Jiang Deng
Abstract:Sn doped indium oxide (ITO) films were fabricated on polyethylene terephtalate (PET) substrate by magnetron sputtering at low deposition...
1867
Authors: Zhen Yi Shao, Ping Yang, Yong Xiang Leng, Qi Zhang, Guo Jiang Wan, Hong Sun, Guang Jun Cai, Nan Huang
Abstract:Si-N-O films have drawn researcher’s much attention recently due to their potential superiority in blood compatibility of biomaterials. In...
1407
Authors: Chien Chen Diao, Chao Chin Chan, Chia Ching Wu, Cheng Fu Yang
Abstract:“GfE Coating Materials Company” had developed a novel AZOY transparent conducting oxide (TCO) material that used ZnO as raw material and...
653
Authors: Ping Luan, Jian Sheng Xie, Jin Hua Li
Chapter 3: Surface, Subsurface, and Interface Phenomena
Abstract:Using magnetron sputtering technology, the CuInSi thin films were prepared by multilayer synthesized method. The structure of CuInSi films...
822