Paper Title:
Use of Polyglycolic Acid Unwoven and Woven Fibers for Tendon Engineering In Vitro
  Abstract

Objective: To compare biocompatibility, degradation, and mechanical properties of polyglycolic acid (PGA) unwoven and woven fibers as scaffolding materials for tendon engineering in vitro. Methods: Three kinds of PGA fibers were included in this study. PGA raw material (Purac Co, Holland) was spun into single PGA filaments that were further twisted into woven fibers (PGA- 1). PGA filaments (Nantong Holycon, China) were twisted into woven fibers (PGA-2) as well. PGA-1 and PGA-2 served as experimental groups 1 and 2, while unwoven PGA fibers (Albany Co, USA) served as control group. Three types of PGA fibers were made into cord-like scaffolds that mimic tendon shape and compared with each other for biocompatibility, degradation and biomechanical properties. Avian tenocytes were isolated from digital flexor tendon and expanded in vitro. Cells of the second passage were seeded onto the PGA scaffolds. In the first 2 weeks, the cell- PGA constructs were in vitro cultured without tension and observed for cell adhesion and matrix production. The constructs were then cultured under dynamic loading in a bioreactor for another 2 weeks followed by gross and histological examinations. Results: PGA unwoven fibers have the median diameter of 10µm, while PGA-1 and PGA-2 fibers have the median diameters of 200µm and 60µm, respectively. Microscopy showed that tenocytes adhered well to all three types of PGA fibers in the first 10 days and produced abundant matrices. However, cells showed poor viability on PGA-2 fibers after 10 days, yet good viability on the other two PGA fibers over 2 weeks of observation period. H&E staining showed that there were viable cells and abundant matrices in the control and PGA-1 groups, but not in PGA-2 group after 4 weeks of in vitro culture. Additionally, PGA unwoven fibers degraded faster than woven fibers (PGA-1 and -2). Interestingly, the PGAtenocyte constructs formed tendon-like tissue after 4 weeks of in vitro culture grossly and histologically. Furthermore, mechanical test demonstrated that both PGA woven fibers had much higher tensile strength than unwoven fibers. Conclusion: Different PGA fibers have different biocompatibility with seeded tenocytes. PGA woven fibers could bear more intense mechanical loading and degrade slower than unwoven fibers, which is essential for in vitro generation of tendon tissue. Thus PGA woven fibers might serve as a proper form of scaffolding material for in vitro tendon engineering in a bioreactor.

  Info
Periodical
Key Engineering Materials (Volumes 288-289)
Edited by
Xingdong Zhang, Junzo Tanaka, Yaoting Yu and Yasuhiko Tabata
Pages
7-10
DOI
10.4028/www.scientific.net/KEM.288-289.7
Citation
X. Wei, P.H. Zhang, W.Z. Wang, Z.Q. Tan, D. J. Cao, F. Xu, L. Cui, W. Liu, Y. L. Cao, "Use of Polyglycolic Acid Unwoven and Woven Fibers for Tendon Engineering In Vitro", Key Engineering Materials, Vols. 288-289, pp. 7-10, 2005
Online since
June 2005
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Guo Qiang Chen, Qiong Wu, Ya Wu Wang, Zhong Zheng
Abstract:Poly(hydroxybutyrate-co-hydroxyhexanoate) (PHBHHx) has improved mechanical properties over the existing PHA and our results have shown that...
437
Authors: Hong Xu Qi, Deling Kong, Ping Hu, Jun Zhang, Wei Jie Lin, Fei Song
Abstract:Electrospinning represents an attractive approach for polymer processing. In the present study, gelatin and poly (propylene carbonate)(PPC)...
882
Authors: Han Guo, Jie Wei, Hang Kong, Chang Sheng Liu, Ke Feng Pan
Abstract:Porous calcium phosphate cement (CPC) scaffolds were successfully fabricated utilizing particle-leaching method. Mesenchymal stem cells...
1383
Authors: Cui'e Wen, Yun Cang Li
Chapter 5: Biomedical Titanium Alloys
Abstract:Titanium and some of its alloys have received considerable attention for biomedical applications in recent years due to their excellent...
201
Authors: Yun Cang Li, Chao Han, Xin Kun Zhu, Cui'e Wen, Peter D. Hodgson
Chapter 5: Biomedical Titanium Alloys
Abstract:The mechanical property of porous pure titanium (Ti) scaffold with high porosity might become poorer than that of natural bone. In this...
242