Paper Title:
Simulation of Damage Scenarios in an FRP Composite Suspension Footbridge
  Abstract

Simulations of damage scenarios were carried out using a finite element model of a newly constructed FRP composite footbridge, the Wilcott footbridge. This footbridge represents a new generation of suspension footbridges that have lightweight decks made of pultruded glass fibre reinforced polymer (GFRP) composite elements. It offers several advantages over conventional steel or concrete footbridges, e.g. speed of installation, high resistance to corrosion and saving in weight and foundations. On the other hand, its lightness and slenderness make it more sensitive to dynamic effects, both at serviceability and ultimate limit states. A finite element model using 3-D beam elements was constructed and damage scenarios were simulated and introduced in the model. The natural frequencies, mode shapes as well as time responses due to pedestrian loading were predicted. Different size of delamination in the composite deck was simulated at various locations along the bridge. The sensitivity of natural frequencies and mode shapes due to delamination were assessed by comparing the results of the damaged deck to those of the reference intact deck. The effect of changes in the cables’ initial strains on the modal parameters was also examined, and the sensitivity of modal parameters to cable degradation was assessed.

  Info
Periodical
Key Engineering Materials (Volumes 293-294)
Edited by
W.M. Ostachowicz, J.M. Dulieu-Barton, K.M. Holford, M. Krawczuk and A. Zak
Pages
599-606
DOI
10.4028/www.scientific.net/KEM.293-294.599
Citation
R.A. Votsis, M.M. Abdel Wahab, M.K. Chryssanthopoulos, "Simulation of Damage Scenarios in an FRP Composite Suspension Footbridge ", Key Engineering Materials, Vols. 293-294, pp. 599-606, 2005
Online since
September 2005
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Zhi Hua Wang, Jianyun Chen, Yonggang Zhao, Hong Wei Ma
Abstract:In the present paper, the Damage Location Assurance Criterion (DLAC) is extended to locate and assess damage in a circular cylindrical shell...
565
Authors: Ondrej Kratochvil, Jiri Krizan
Chapter 2: Dynamics and Wind Engineering
Abstract:The paper deals with a dynamic response of footbridge structure which is loaded by a movement of pedestrians. Interaction between crowd and...
180
Authors: Vladimír Šána
Chapter 2: Building Structures and Materials
Abstract:This paper is focused on the assessment of serviceability of the footbridge structure, which has been excited by pedestrians and vandals. The...
263