Paper Title:
An Investigation into Scalpel Blade Sharpness Using Cutting Experiments and Finite Element Analysis
  Abstract

This paper presents an investigation into the sharpness of a surgical scalpel blade. An experiment was carried out in which a surgical scalpel blade was pushed through an elastomeric substrate at a constant velocity. The force-displacement characteristics were examined by plotting the stiffness as a function of blade displacement and it was found that this curve could clearly identify the point where the material separates to form a cut. A blade sharpness measurement was defined as the energy required to initiate an opening or cut in the substrate. A finite element model was developed to examine the stress state in the substrate at the point where the opening initiates. The development of this model is described. The model was validated against the experiment and close agreement was obtained. The von-Mises stress distribution under the blade tip was plotted and it was shown that the peak stress actually occurs away from the blade tip, suggesting that material separation would initiate away from the substrate surface.

  Info
Periodical
Key Engineering Materials (Volumes 293-294)
Edited by
W.M. Ostachowicz, J.M. Dulieu-Barton, K.M. Holford, M. Krawczuk and A. Zak
Pages
769-776
DOI
10.4028/www.scientific.net/KEM.293-294.769
Citation
C.T. McCarthy, M. Hussey, M. D. Gilchrist, "An Investigation into Scalpel Blade Sharpness Using Cutting Experiments and Finite Element Analysis ", Key Engineering Materials, Vols. 293-294, pp. 769-776, 2005
Online since
September 2005
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: E. McCulloch, Alan MacBeath, Margaret Lucas
Abstract:The performance of an ultrasonic cutting device critically relies on the interaction of the cutting tool and the material to be cut. A...
519
Authors: Aleksandrs Korjakins, Sergejs Gluhihs, Andrejs Popovs, Aleksandr Tiskunov
Abstract:With increasing attention being devoted to the problem of reducing service costs for a wide range of turbines and compressors, an attractive...
37
Authors: Seksan Chaijit, Yoshikazu Yajima, Kazuya Kikuchi, Shigeru Nagasawa, Yasushi Fukuzawa, Akira Hine
Abstract:This paper describes for breaking behaviors on the surface layer of a white-coated paperboard during indentation of a center bevel blade....
39
Authors: Zi Xu Liu, Guang Hui Zhang, Bo Wang, Xue Wei Zhang, Tian Biao Yu, Wan Shan Wang
Chapter 8: New Energy Materials
Abstract:In the article, blade element momentum theory is used for calculated aerodynamic load of blade under the different wind velocities. 3D model...
1790
Authors: Zhi Gang Liu, Hou Jun Qi, Yu Jun Cai
Chapter 2: Simulation of Machining Processes
Abstract:The thin-walled blade of aero engine has low stiffness, during machining, it easily generates deflection due to the milling force, but...
124