Paper Title:
Crack Growth Simulation of Arbitrarily Shaped 3D Cracks Using Finite Element Alternating Method
  Abstract

In order to simulate the growth of arbitrarily shaped three dimensional cracks, the finite element alternating method is extended. As the required analytical solution for a crack in an infinite body, the symmetric Galerkin boundary element method formulated by Li and Mear is used. In the study, a crack is modeled as distribution of displacement discontinuities, and the governing equation is formulated as singularity-reduced integral equations. With the proposed method several example problems for three dimensional cracks in an infinite solid, as well as their growth under fatigue, are solved and the accuracy and efficiency of the method are demonstrated.

  Info
Periodical
Key Engineering Materials (Volumes 297-300)
Edited by
Young-Jin Kim, Dong-Ho Bae and Yun-Jae Kim
Pages
1056-1061
DOI
10.4028/www.scientific.net/KEM.297-300.1056
Citation
T. S. Kim, S. Y. Park, J. H. Park, "Crack Growth Simulation of Arbitrarily Shaped 3D Cracks Using Finite Element Alternating Method", Key Engineering Materials, Vols. 297-300, pp. 1056-1061, 2005
Online since
November 2005
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Li Yun Li, F.X. Che, D.A. Liu
Abstract:Multi-crack problems are deeply involved in rock-like material and rock engineering. In order to study the influences of lateral stress and...
1523
Authors: Tomáš Denk, Vladislav Oliva, Aleš Materna
Abstract:A two-parameter constraint-based fracture mechanics approach is used to explain the effect of the constraint on the apparently anomalous...
307
Authors: Ozgur Inan, Serkan Dag, Fazil Erdogan
Abstract:In this study the three – dimensional surface cracking of a graded coating bonded to a homogeneous substrate is considered. The main...
373
Authors: Masanori Kikuchi, Yoshitaka Wada, Masafumi Takahashi, Yu Long Li
Abstract:Fatigue crack growth under mixed mode loading conditions is simulated using S-FEM. By using S-FEM technique, only local mesh should be...
133