Paper Title:
Mechanisms of Fatigue Crack Growth in WC-Co Cemented Carbides
  Abstract

In order to study the influence of stress ratio and WC grain size, the characteristics of fatigue crack growth were investigated in WC-Co cemented carbides with two different grain sizes of 3 and 6 µm. Fatigue crack growth tests were carried out over a wide range of fatigue crack growth rates covering the threshold stress intensity factor range DKth. It was found that crack growth rate da/dN against stress intensity factor range DK depended on stress ratio R. The crack growth rate plotted in terms of effective stress intensity factor range DKeff still exhibited the effect of microstructure. Fractographic examination revealed brittle fracture at R=0.1 and ductile fracture at R=0.5 in Co binder phase. The amount of Co phase transformation for stress ratio was closely related to fatigue crack growth characteristics.

  Info
Periodical
Key Engineering Materials (Volumes 297-300)
Edited by
Young-Jin Kim, Dong-Ho Bae and Yun-Jae Kim
Pages
1120-1125
DOI
10.4028/www.scientific.net/KEM.297-300.1120
Citation
M. H. Boo, C. Y. Park, "Mechanisms of Fatigue Crack Growth in WC-Co Cemented Carbides ", Key Engineering Materials, Vols. 297-300, pp. 1120-1125, 2005
Online since
November 2005
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Zhong Guang Wang, H. Zhang, Q.S. Zang, Zhe Feng Zhang, Z.M. Sun
693
Authors: Tomáš Denk, Vladislav Oliva, Aleš Materna
Abstract:A two-parameter constraint-based fracture mechanics approach is used to explain the effect of the constraint on the apparently anomalous...
307
Authors: Won Beom Kim, Jeom Kee Paik
Abstract:In this research, corrosion fatigue tests using 490MPa TMCP steel were performed in synthetic seawater condition to investigate the...
1043
Authors: Stanislav Seitl, Pavel Hutař, Zdeněk Knésl
Abstract:The formulations of fatigue crack growth prediction are still mostly based on phenomenological models. A commonly used formula in the field...
557