Paper Title:
Thermomechanical Fatigue Behavior of the Ferritic Stainless Steel
  Abstract

A thermomechanical fatigue (TMF) life prediction model for ferritic stainless steel, used in exhaust manifold of automobile, was developed based on Tomkins’ two-dimensional crack propagation model. Low-cycle fatigue (LCF) and TMF tests were carried out in a wide temperature range from 200 to 650°C. New concept of plastic strain range on TMF was proposed. Effective stress concept was introduced to get a reasonable stress range in TMF hysteresis loop. The proposed model predicted TMF life within 2X scatter band. The experimental results reveal that TMF life is about 10% of isothermal fatigue life.

  Info
Periodical
Key Engineering Materials (Volumes 297-300)
Edited by
Young-Jin Kim, Dong-Ho Bae and Yun-Jae Kim
Pages
1146-1151
DOI
10.4028/www.scientific.net/KEM.297-300.1146
Citation
K. O. Lee, S. G. Hong, S. S. Yoon, S. B. Lee, "Thermomechanical Fatigue Behavior of the Ferritic Stainless Steel ", Key Engineering Materials, Vols. 297-300, pp. 1146-1151, 2005
Online since
November 2005
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Martin Petrenec, Veronique Aubin, Jaroslav Polák, Suzanne Degallaix
Abstract:Austenitic-ferritic duplex stainless steel has been subjected to uniaxial and biaxial nonproportional cyclic loading with the same equivalent...
179
Authors: Yoshifumi Iwasaki, Yuji Nakasone
Abstract:The present study has investigated plasticity-induced martensitic phase transformation in fatigue of unnotched SUS304 plates. Martensitic...
1152
Authors: Rimma Lapovok
Abstract:Equal Channel Angular Extrusion (ECAE) has become a very popular tool for studying the evolution of microstructure and properties under...
37
Authors: Hui Hui Zhao, Wen Fang Zhang
Chapter 3: Civil Engineering
Abstract:The application of ABAQUS finite element software non-linear finite element analysis of brick masonry walls with structural column. Build...
791
Authors: Justin O. Karl, Andrew T. Copeland, Amy K. Besio
Chapter 9: Physical Properties of Materials in Mechanical Engineering
Abstract:The behavior of parts subjected to simultaneous thermal and mechanical fatigue loads is an area of research that carries great significance...
838