Paper Title:
Effects of Temperature and Loading Rate on Fracture Toughness
  Abstract

It is known that fracture toughness value is affected by test temperature, specimen thickness and loading rate. In the present study, specimen size and test temperature are varied widely with the obtained data then being analyzed using rate parameter. Additionally, the fracture toughness values are obtained using round bar-type specimen with a circular notch. This result is compared with the result of the CT specimens, and the advantage of using the round bar-type specimen with a circular notch to modify specimen size requirement is discussed. Sample material used is HT780 high tensile strength steel. The test specimens were 1T, 2T and 4T-CT that are described in ASTM E399. Notched round bar-type specimen with a diameter of 15mm and notch root radius of 0.25mm is also used. The test temperature is varied from a low temperature to room temperature, and loading rate is varied about the 1T-CT specimen and the notched round bar-type specimen between static and 1000mm/sec. The test temperature and the loading rate dependency of the fracture toughness values were arranged by the rate parameter. The fracture toughness value has decreased with the decrease in test temperature and with the increase in specimen thickness and loading rate. The fracture toughness value obtained from the notched round bar-type specimen indicated a value close to 2T-CT specimen. It is shown that valid fracture toughness value can be obtained with a small test specimen by the notched round bar-type specimen. The test temperature and the loading rate dependency of the fracture toughness values can be successfully arranged by the rate parameter that can express both temperature and strain rate dependencies. Feasibility of using round bar-type specimen to obtain valid fracture toughness values with less specimen mass was demonstrated.

  Info
Periodical
Key Engineering Materials (Volumes 297-300)
Edited by
Young-Jin Kim, Dong-Ho Bae and Yun-Jae Kim
Pages
2397-2402
DOI
10.4028/www.scientific.net/KEM.297-300.2397
Citation
T. Murakami, H. Toda, T. Kobayashi, "Effects of Temperature and Loading Rate on Fracture Toughness ", Key Engineering Materials, Vols. 297-300, pp. 2397-2402, 2005
Online since
November 2005
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Jae Hoon Kim, Duck Hoi Kim, Nam Su Rho, Young Shin Lee, Song Heo Koo, Soon Il Moon
Abstract:The objective of this study is to evaluate the mechanical properties of static, quasidynamic and dynamic fracture toughness of glass-filled...
927
Authors: Dong Woo Lee, Seok Swoo Cho, Won Sik Joo
Abstract:A roller mill is composed of several rollers, rotational table liners, hydraulic cylinders and raw materials are ground between the rollers...
457
Authors: Yan Hua Zhao, Hua Zhang, Wei Dong
Abstract:The wedge splitting (WS) test is now a promising method to perform stable fracture mechanics tests on concrete-like quasi brittle materials....
425
Authors: Fang Juan Qi, Jian Li, Zhi Juan Yang, Min Fang
Mechanical Behavior & Fracture
Abstract:Investigation shows that one of the failure modes of HDPE pipe is the crack slowly grows across the thick direction and leads to failure at...
1116
Authors: Cui Fang Duan, Wei Li, Ji Liang Zhang
Chapter 4: Material Engineering and its Application Technology
Abstract:This article studies aluminum alloy plate through 16 to 3mm thick with a hole under room temperature fracture test. The experimental results...
315