Paper Title:
Computer Simulation of Human Mandibular Bone Structure by iBone, a Novel Reaction-Diffusion Bone Remodeling Model
  Abstract

Bone is a complex system with adaptation and repair functions. To understand how bone cells can create a structure adapted to the mechanical environment, we proposed a simple bone remodeling model, iBone, based on a reaction-diffusion system [1]. A 3-dimensional mandibular bone model consisting of approximately 1.4 million elements was constructed from sequential computer tomography (CT) images of a 14-year old female. Both teeth and bone were modeled with isoparametric voxel elements with Young's Modulus = 20 GPa and Poisson's ratio = 0.3. Both heads of the mandible were fixed allowing rotation and horizontal movement. Teeth were fixed vertically allowing horizontal movements. Incisor, right/left group, and right/left molar biting conditions were simulated. The locations and directions of muscles, and their forces were predicted from the CT images. Remodeling simulation was performed by 10 sets of finite element method analysis and reaction-diffusion remodeling simulation to obtain internal structure adapted to each loading condition. As a result, the major part of the corpus of the simulated mandibular bone showed similar internal structures under different biting conditions. Moreover, these simulated structures were satisfactorily similar to that of the real mandible. Computer simulation of three-dimensional bone structures based on CT images will be very useful for understanding the patho-physiological state of bone under various mechanical conditions, and may assist orthopedic doctors to predict the risk and efficacy of surgical therapies.

  Info
Periodical
Key Engineering Materials (Volumes 306-308)
Edited by
Ichsan Setya Putra and Djoko Suharto
Pages
1277-1282
DOI
10.4028/www.scientific.net/KEM.306-308.1277
Citation
K.-I. Tezuka, A. Takahashi, T. Takeda, Y. Wada, M. Kikuchi, "Computer Simulation of Human Mandibular Bone Structure by iBone, a Novel Reaction-Diffusion Bone Remodeling Model", Key Engineering Materials, Vols. 306-308, pp. 1277-1282, 2006
Online since
March 2006
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Ken-Ichi Tezuka, Yoshitaka Wada, Masanori Kikuchi
601
Authors: Xue Jun Wang, R. Wang, J.M. Luo, Ji Yong Chen, Xing Dong Zhang
Abstract:It is important to obtain mechanical coupling between dental implants and bone, because the lack of mechanical coupling may cause bone loss...
657
Authors: Tae Woo Lee, Chang Yong Ko, Dae Gon Woo, Han Sung Kim
Abstract:Several researchers investigated the mechanical characteristics of human trabecular bone using finite element analysis (FEA) based on micro...
41
Authors: Daniel Lin, Qing Li, Wei Li, Michael V. Swain
Abstract:Currently, titanium dominates the dental implant materials due to its strength and bio-inerrability. The use of titanium implant had...
1035
Authors: Li Jun Yang, Xi Nan Dang, Li Li Wang, Lian Zhou
Abstract:Modeling, design and fabrication of tissue scaffolds with intricate architecture, porosity and pore size for desired tissue properties...
230