Paper Title:
A Novel Description of Thermomechanical Behavior Using a Rheological Model
  Abstract

Isothermal cyclic stress-strain deformation and thermomechanical deformation (TMD) of 429EM stainless steel were analyzed using a rheological model employing a bi-linear model. The proposed model was composed of three parameters: elastic modulus, yield stress and flow stress. Monotonic stress-strain curves at various temperatures were used to construct the model. The yield stress in the model was nearly same as 0.2% offset yield stress. Hardening relation factor, m, was proposed to relate cyclic hardening to kinematic hardening. Isothermal cyclic stress-strain deformation could be described well by the proposed model. The model was extended to describe TMD. The results revealed that the bi-linear thermomechanical model overestimates the experimental data under both in-phase and out-of-phase conditions in the temperature range of 350-500oC and it was due to the enhanced dynamic recovery effect.

  Info
Periodical
Key Engineering Materials (Volumes 306-308)
Edited by
Ichsan Setya Putra and Djoko Suharto
Pages
205-210
DOI
10.4028/www.scientific.net/KEM.306-308.205
Citation
K. O. Lee, S. G. Hong, S. B. Lee, "A Novel Description of Thermomechanical Behavior Using a Rheological Model", Key Engineering Materials, Vols. 306-308, pp. 205-210, 2006
Online since
March 2006
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Belen Moreno, Pablo Lopez-Crespo, Antonio González-Herrera, Jose Zapatero
Abstract:Many mechanical components are subjected to multiaxial fatigue. These conditions are typically coming from external loads, the geometry of...
41
Authors: Shu Ying Yin, Li Jia Chen, Xin Wang
Building Materials
Abstract:In order to identify the influence of solid solution, aging and solid solution plus aging treatments on the low-cycle fatigue behavior of the...
883
Authors: Ewa Marcisz, Adam Niesłony, Tadeusz Łagoda
Chapter 1: Fatigue Life Prediction
Abstract:The paper presents the concept of division of the total strain amplitudes. Simulations were performed for high-alloy steel X6NiCr3220 for...
43
Authors: Hong Fu Xiang, Jing Hai Tao, Ji Heng Wang, Hui Li, An Lun Dai
Chapter 2: Engineering Materials Research
Abstract:A beta phase containing titanium aluminum compound was prepared. Isothermal Fatigue(IF) were subjected at 650 °C at three strain rates, such...
314