Paper Title:
Biological and Biomechanical Properties of Chemically Modified SLA Titanium Implants In Vitro and In Vivo
  Abstract

The objective of this study was to evaluate the interface shear strength and the responses of osteoblast-like cells to titanium implants with a sandblasted and acid-etched surface modified by alkali and heat treatments (SLA-AH). The implants with machined and SLA surface served as controls. Each type of implant was characterized by scanning electron microscopy (SEM) and energy-dispersive x-ray (EDX) analysis. In vitro assays were made using human osteoblast-like cell culture on different surfaces. The rectangle plates were also transcortically implanted into the proximal metaphysis of New Zealand White rabbit tibiae. After 4, 8 and 12 weeks implantation, mechanical and histological assessments were performed to evaluate biomechanical and biological behavior in vivo. By SEM examination, SLA surface combined with AH treatments revealed a macro-rough surface with finely microporous structure. The in vitro assays showed that the SLA-AH surfaces exhibited more extensive cell deposition and improved cell proliferation as compared with controls. Pull-out test demonstrated that the SLA-AH treated implants had a higher mechanical strength than the controls at all interval time after implantation. Histologically, the test implants revealed a significantly greater percentage of bone-implant contact when compared with controls. The results of this study suggest that a useful approach by combined processes could optimize implant surfaces for bone deposition and produce distinct biological surface features.

  Info
Periodical
Key Engineering Materials (Volumes 309-311)
Main Theme
Edited by
Takashi Nakamura, Kimihiro Yamashita and Masashi Neo
Pages
399-402
DOI
10.4028/www.scientific.net/KEM.309-311.399
Citation
Y. B. Feng, W. Q. Yan, D. S. Yang, J. Feng, X. X. Wang, S. Zhang, "Biological and Biomechanical Properties of Chemically Modified SLA Titanium Implants In Vitro and In Vivo", Key Engineering Materials, Vols. 309-311, pp. 399-402, 2006
Online since
May 2006
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Shunsuke Fujibayashi, Hyun Min Kim, Masashi Neo, Masaki Uchida, Tadashi Kokubo, Takashi Nakamura
887
Authors: Anke Bernstein, Renate Gildenhaar, Doreen Nöbel, Georg Berger
623
Authors: Li Ping Wang, Bang Cheng Yang, Ji Yong Chen, Xing Dong Zhang
Abstract:The bioactivities of titanium oxide film on titanium surface received from different chemical treatment methods were studied in SBF in vitro...
545
Authors: Ana Cristina P. Machado, Marize Varella de Oliveira, Robson Pacheco Pereira, Yasmin R. Carvalho, Carlos Alberto Alves Cairo
Abstract:The osseointegration of porous titanium implants was evaluated in the present work. Implants were fabricated from ASTM grade 2 titanium by a...
179
Authors: Caroline Richard
Chapter 2: Contributed Papers
Abstract:Biomedical engineering is an advanced technology based on an extremely complex development of advanced biomaterials. Since the first...
1570