Paper Title:
Development of a New Composite Bone Cement as a Bone Substitute for Vertebroplasty
  Abstract

A new composite bone cement designated ‘G2B1’ was developed for percutaneous transpedicular vertebroplasty. G2B1 contains beta tricalcium phosphate particles and methylmethacrylate –methylacrylate copolymer as the powder components, and methylmethacrylate, urethane dimethacrylate, and tetrahydrofurfuryl methacrylate as the liquid components. Osteoconductivity and histological changes with time were evaluated using scanning electron microscopy, contact microradiography, and Giemsa surface staining 4, 8, 12, 26, and 52 weeks after implantation into rat tibiae. To evaluate osteoconductivity, affinity indices (%) were calculated. Scanning electron microscopy and contact microradiography revealed that bone contact with G2B1 was attained within 4 weeks (affinity index: 50.2 ± 11.8 at 4 weeks) and at most of the margin within 26 weeks (affinity index: 87.4 ± 7.2 at 26 weeks). Giemsa surface staining showed that there was almost no inflammatory reaction around the G2B1. These results indicate that G2B1 is a biocompatible and highly osteoconductive bone cement.

  Info
Periodical
Key Engineering Materials (Volumes 309-311)
Main Theme
Edited by
Takashi Nakamura, Kimihiro Yamashita and Masashi Neo
Pages
805-808
DOI
10.4028/www.scientific.net/KEM.309-311.805
Citation
K. Goto, S. Fujibayashi, J. Tamura, K. Kawanabe, S. Hasegawa, R. Kowalski, T. Nakamura, "Development of a New Composite Bone Cement as a Bone Substitute for Vertebroplasty ", Key Engineering Materials, Vols. 309-311, pp. 805-808, 2006
Online since
May 2006
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: H. Teramoto, A. Kawai, S. Sugihara, A. Yoshida, Hisahiro Inoue
269
Authors: M. Gutierres, N. Sooraj Hussain, A. Afonso, L. Almeida, T. Cabral, M.A. Lopes, José D. Santos
Abstract:This paper reports the ability of Bonelike® to regenerate bone defected areas when implanted in the tibia of 3 patients (average age of 59...
1041
Authors: G. Daculsi, I. Khairoun, Racquel Z. LeGeros, Françoise Moreau, Paul Pilet, Xavier Bourges, Pierre Weiss, Olivier Gauthier
811
Authors: Xavier Bourges, Serge Baroth, Eric Goyenvalle, Ronan Cognet, Françoise Moreau, Paul Pilet, Eric Aguado, G. Daculsi
Abstract:We performed vertebroplasty on goat model by injecting a new macroporous calcium phosphate cement MCPC®. The mechanical property of the...
377
Authors: G. Daculsi, E. Goyenvalle, E. Aguado
Abstract:It was demonstrated that microstructured surfaces improve cell spreading and bone ingrowth. Particularly, the surface roughness modulates the...
795