Paper Title:
Chemical Composition and Mechanical Properties of Bio-Derived Compact Bone Scaffolds
  Abstract

To compare the chemical composition and mechanical properties of the bio-derived compact bone scaffold (BDCBS) with the normal compact bone in human. Human compact bone were harvested and divided into control and experimental group. For the latter, BDCBS was prepared with physical and chemical methods. The major components (calcium, phosphorus, collagen protein) and heavy metal contents of the two groups were determined with biochemical assay. Histological examinations were performed to investigate the structure. Cylindroids from the normal compact bone and the BDCBS (6 in each group) were tested under compression. There was no significant difference between the two groups for major components. In addition, there were a few amounts of heavy metal components in BDCBS and control. Histological examinations confirmed the acellular structure in the BDCBS. Results from mechanical testing showed the compressive strength, elastic modulus and ultimate strain (193MPa, 13.76GPa, and 2.3%) of the BDCBS were a bit lower than those (205MPa, 15.67GPa, and 2.5% respectively) of control, but the differences were not statistically significant. In conclusion, there are almost the same matrix structure and composition with similar biomechanical properties between the BDCBS and the control. These results may underscore the potential of the BDCBS in tissue engineering bone.

  Info
Periodical
Key Engineering Materials (Volumes 309-311)
Main Theme
Edited by
Takashi Nakamura, Kimihiro Yamashita and Masashi Neo
Pages
891-894
DOI
10.4028/www.scientific.net/KEM.309-311.891
Citation
T. W. Qin, Z. M. Yang, X. T. Mo, J. C. Luo, L. Deng, X. Q. Li, "Chemical Composition and Mechanical Properties of Bio-Derived Compact Bone Scaffolds ", Key Engineering Materials, Vols. 309-311, pp. 891-894, 2006
Online since
May 2006
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Li Min Dong, Chen Wang, Jie Mo Tian, Jian Pan, Qing Feng Zan
Abstract:Carbonated hydroxyapatite (CHA) bone cement is capable of self-setting and has the component similar to the mineral phase of natural bone....
1545
Authors: G. Daculsi, I. Khairoun, Racquel Z. LeGeros, Françoise Moreau, Paul Pilet, Xavier Bourges, Pierre Weiss, Olivier Gauthier
811
Authors: Li Jun Yang, Xi Nan Dang, Li Li Wang, Lian Zhou
Abstract:Modeling, design and fabrication of tissue scaffolds with intricate architecture, porosity and pore size for desired tissue properties...
230
Authors: Jick Soo Jhun, Hui Suk Yun, Eui Kyun Park, Hong In Shin
Abstract:To improve the efficiency of osteogenic repair, we compared 3 types of round granular bone substitutes composed of hydroxyapatite (HA) in a...
143
Authors: Chi Deng, Bao Wang, Cheng Dong Zhang, Wei Zhi, Jie Weng
Chapter 2: Biochemical Materials, Environmental Materials and Chemistry Processing
Abstract:Aim of the study is to investigate the in vitro reaction between rat bone cell and poly (vinyl alcohol) (PVA)-matrix composites. Sample of...
296