Paper Title:
Surface Properties and Cytocompatibility of Bio-derived Compact Bone as Scaffolds for Tissue Engineering Bone
  Abstract

Many scaffolds are candidates for use in tissue engineering approaches for the repair or replacement of bone defects. Among the scaffolds tested for tissue engineering of bone, bio-derived compact bone scaffold (BDCBS) containing mineralized collagen fibers, phosphorus and calcium, as natural bone does, is one of the most promising candidates for this purpose. To analyze how appropriate the BDCBS would be for tissue engineering purposes, we established an in vitro characterization system to describe the surface properties and cytocompaibility of the scaffold. Surface properties were determined by means of scanning electron microscope and scanning probe microscope. The surface phase was examined with the Fourier transform infrared spectroscopy and X-ray diffraction. Osteoblasts from human embryos were isolated from the periosteum. After in vitro expansion, cells were cultivated on the BDCBS. Real-time cell culture was used to monitor the growth process of cells seeded on the scaffold. Using this in vitro characterization, we were able to demonstrate effective growth of osteoblasts on this scaffold. In summary, BDCBS has the surface characterization similar to a natural bone and also has strong affinity for osteoblast attachment and proliferation, indicating the potential as an effective scaffold used in tissue engineering bone.

  Info
Periodical
Key Engineering Materials (Volumes 309-311)
Main Theme
Edited by
Takashi Nakamura, Kimihiro Yamashita and Masashi Neo
Pages
895-898
DOI
10.4028/www.scientific.net/KEM.309-311.895
Citation
T. W. Qin, Z. M. Yang, X. Q. Li, X. T. Mo, J. C. Luo, H. Q. Xie, "Surface Properties and Cytocompatibility of Bio-derived Compact Bone as Scaffolds for Tissue Engineering Bone ", Key Engineering Materials, Vols. 309-311, pp. 895-898, 2006
Online since
May 2006
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Q.Z. Chen, W.W. Lu, C.T. Wong, K.M.C. Cheung, J.C.Y. Leong, K.D.K. Luk
165
Authors: Cornelia Ganz, W. Xu, G. Holzhüter, W. Götz, B. Vollmar, Th. Gerber
Abstract:Various bone graft substitutes were used in clinical practise in the treatment of bone defects after trauma or osteoporosis. Many synthetic...
732
Authors: G. Daculsi, E. Goyenvalle, E. Aguado
Abstract:It was demonstrated that microstructured surfaces improve cell spreading and bone ingrowth. Particularly, the surface roughness modulates the...
795
Authors: Jayachandran Venkatesan, Se Kwon Kim
Chapter 4: Ceramic Materials / Superconducting Materials
Abstract:In the recent years, significant developments have been achieved with chitosan and hydroxyapatite (HAp) scaffolds for bone tissue...
212
Authors: Maiko Miura, Jun Fukasawa, Yumiko Yasutomi, Haruka Maehashi, Tomokazu Matsuura, Mamoru Aizawa
VI. Cell Studies and Cell-Material Interactions
Abstract:We have successfully developed porous apatite-fiber scaffolds (AFSs) which have three-dimensional (3D) inter-connected pores; subsequently,...
397