Paper Title:
Conventional Sintering Route for the Production of Alumina-Based Nanocomposites: A Microstructural Characterization
  Abstract

Two α-Al2O3/YAG composite powders have been prepared by reverse-strike precipitation, starting from chlorides aqueous solutions, the former containing 50 vol% of the two phases (labelled as AY50) and the latter made of 90 vol% of alumina and 10 vol% of YAG (AY90). The as-prepared powders were characterised by DTA/TG simultaneous analysis as well as by XRD analysis performed after calcination at different temperatures. A systematic TEM analysis was performed on AY50 powders pre-treated at different temperatures, in order to investigate the crystallites size evolution as a function of the temperature. After that, samples were compacted by uniaxial pressing and sintered at 1600°C for 3h. SEM observations revealed a homogeneous microstructure made of micronic alpha-alumina and YAG grains. For limiting grain growth through the decreasing of the maximum sintering temperature, an innovative activation procedure by coupling suitable thermal and mechanical treatments of the powders was performed. After that, high densification (>95% of the theoretical density) was easily achieved by performing a free sintering in the temperature range between 1320° and 1420°C, with different soaking times at the maximum temperature. The resulting sintered bodies showed an effective retention of the nano-size of the primary particles. By SEM, highly-homogeneous nanostructures, with an average grains size of about 200 and 300 nm for AY50 and AY90, respectively, were observed.

  Info
Periodical
Key Engineering Materials (Volumes 317-318)
Edited by
T. Ohji, T. Sekino and K. Niihara
Pages
267-270
DOI
10.4028/www.scientific.net/KEM.317-318.267
Citation
P. Palmero, C. Esnouf, L. Montanaro, G. Fantozzi, "Conventional Sintering Route for the Production of Alumina-Based Nanocomposites: A Microstructural Characterization", Key Engineering Materials, Vols. 317-318, pp. 267-270, 2006
Online since
August 2006
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Oleg Vasylkiv, Yoshio Sakka, Valeriy Skorokhod
2347
Authors: Seong Min Choi, Uraiwan Leela-adisorn, Sawao Honda, Shinobu Hashimoto, Hideo Awaji
Abstract:Intra-type structure of ceramic matrix composites (CMCs) can improve the mechanical properties of ceramic materials. In this work, we used...
115
Authors: Oleg Vasylkiv, Yoshio Sakka, Valeriy Skorokhod
Abstract:The 0.75 to 3 mol% Y2O3-stabilized tetragonal ZrO2 and Al2O3/Y-TZP nano-composite ceramics with 0.2 to 0.7 wt% of alumina were produced by a...
615
Authors: Jie Qiang Wang, Qing Hua Yu, Shao Hua Zheng, Zhi Wang
Abstract:Using NH4HCO3 solution as precipitant, the ultrafine 3Y-ZrO2/Al2O3 precursors were prepared by the liquid-phase precipitation method. The...
1137
Authors: Tahir Ahmad, Othman Mamat, Bambang A. Wahjoedi
Abstract:Ceramic-ceramic composites are used around the world in demanding thermal, structural and electrical insulating applications. The present...
85