Paper Title:
Dry Sliding Wear of Lu2O3 Sialon Ceramics
  Abstract

The effects of microstructure and composition on the wear properties of Lu sialon ceramics have been studied under dry sliding conditions through block-on-ring wear tests. Microstructural and compositional effects on wear behaviour were studied by producing both equiaxed and elongated α sialons through the incorporation of additional oxides to promote extended liquid formation and grain growth, and by producing α / β composite materials with elongated β grains. The wear response of the materials is discussed in terms of the dominant wear mechanism under different experimental conditions. Under higher loads, where fracture dominates, materials with improved mechanical properties show better wear resistance and both the composite materials and the elongated α sialons showed lower wear rates than the equiaxed materials due to the elongated grain microstructures. Under low normal loads, fracture does not occur and the dominant wear mechanism is thought to be tribochemically assisted wear. Under these conditions, the equiaxed materials had better wear resistance than the composites, and the Lu-α sialon showed an order of magnitude lower wear rate than an equivalent Y-α sialon, thought to be due to better oxidation resistance and improved refractory nature afforded through the use of the smaller radius cation. The elongated Lu-α sialons under these low load conditions showed wear resistance that was to some extent dependent on the composition of the additional liquid phase, with high SiO2 contents leading to higher wear rates.

  Info
Periodical
Key Engineering Materials (Volumes 317-318)
Edited by
T. Ohji, T. Sekino and K. Niihara
Pages
351-354
DOI
10.4028/www.scientific.net/KEM.317-318.351
Citation
M. I. Jones, K. Hirao, H. Hyuga, Y. Yamauchi, "Dry Sliding Wear of Lu2O3 Sialon Ceramics", Key Engineering Materials, Vols. 317-318, pp. 351-354, 2006
Online since
August 2006
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Chun Feng Liu, Feng Ye, Yu Zhou
Abstract:Ytterbia and Lutecia were adopted to stabilize α-sialon ceramics during a two-step hot press sintering, respectively. Although Yb3+ and Lu3+...
1525
Authors: Jian Qin Gao, Zheng Ren Huang, Jian Chen, Gui Lin Liu, Xue Jian Liu
Abstract:Solid state sintered silicon carbide (S-SiC) ceramic is one of the top optical materials for high space reliability and other excellent...
21
Authors: Zhang Fu Yang, Hao Wang, Xin Min Min, Wei Min Wang, Zheng Yi Fu
Abstract:Ca-α-sialons with low oxygen content were fabricated at 1800°C by hot pressing. The phase and microstructure were characterized by XRD and...
412