Paper Title:
Dynamic Impact Analysis of a Rotating Beam Having a Tip Mass
  Abstract

Flexible structures undertaking impact while undergoing overall motion can be found in several industrial products these days. Transient motion and stress induced by impact should be considered elaborately to extend the life of the products. In the present study, a modeling method for a flexible beam with a tip mass that undertakes impact while undergoes large overall motion is presented. The tip mass takes the impact force and the transient responses of the beam are calculated by employing the assumed mode method. The stiffness variation caused by the large overall motion is considered in this modeling. The effects of the tip mass and the angular speed of the beam on the transient responses are investigated.

  Info
Periodical
Key Engineering Materials (Volumes 321-323)
Edited by
Seung-Seok Lee, Joon Hyun Lee, Ik Keun Park, Sung-Jin Song, Man Yong Choi
Pages
1649-1653
DOI
10.4028/www.scientific.net/KEM.321-323.1649
Citation
H. S. Lim, H. H. Yoo, "Dynamic Impact Analysis of a Rotating Beam Having a Tip Mass", Key Engineering Materials, Vols. 321-323, pp. 1649-1653, 2006
Online since
October 2006
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Wei Wei Zhang, Zhi Hua Wang, Hong Wei Ma
Abstract:The objective of this study is to show the potential of the crack detection method based on Wavelet Packet Transform (WPT), which is...
285
Authors: Md. Saiful Islam, Abbas Kouzani, Xiu Juan Dai, Wojtek P. Michalski
Abstract:This paper investigates the bending deformation of a cantilever biosensor based on a single-walled carbon nanotube (CNT) and single-walled...
650
Authors: Yu Liu, Shen Liu, Wen Ji Xiong, Hong Ming Zeng
Chapter 3: Advanced Mechanical, Manufacturing and Building Engineering, Control Technology
Abstract:Establishing the system model of free beam vibration gyro under the influence of the Support structure, deriving and analyzing its vibration...
476