Paper Title:
DBEM Crack Growth Simulation and Experimental Results for a Multi-Layer and Multi-Material Aeronautic Panel
  Abstract

A special specimen was created cutting a rectangular notched area from the surrounding of the upper left corner of a wide body aircraft door. This part of the aircraft skin is made of different layers with variable thickness and material (titanium or aluminum). Then a fatigue traction load was applied and some notches were cut in the different layers in order to speed up the crack initiation and reproduce a realistic crack scenario. Such through cracks were monitored during their propagation along the specimen width, in order to have available for the simulation a realistic initial scenario and experimental propagation data useful for the correlation with the simulated crack path and growth rates. In particular an innovative DBEM modelling approach was devised, using a commercial code (BEASY), capable of explicitly modelling the different test article layers with their rivet connections even in a two-dimensional approach. The results of the simulation show a satisfactory correlation with the experimental crack path and growth rates even for such a complex problem: three different panels (one skin with two doublers), made of different materials, each one with a variable thickness and connected through numerous rivets (whose shear stiffness is taken into account for the simulation).

  Info
Periodical
Key Engineering Materials (Volumes 324-325)
Edited by
M.H. Aliabadi, Qingfen Li, Li Li and F.-G. Buchholz
Pages
1123-1126
DOI
10.4028/www.scientific.net/KEM.324-325.1123
Citation
R. G. Citarella, M. Silvestri, A. Apicella, "DBEM Crack Growth Simulation and Experimental Results for a Multi-Layer and Multi-Material Aeronautic Panel ", Key Engineering Materials, Vols. 324-325, pp. 1123-1126, 2006
Online since
November 2006
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Li Yun Li, F.X. Che, D.A. Liu
Abstract:Multi-crack problems are deeply involved in rock-like material and rock engineering. In order to study the influences of lateral stress and...
1523
Authors: Tomáš Denk, Vladislav Oliva, Aleš Materna
Abstract:A two-parameter constraint-based fracture mechanics approach is used to explain the effect of the constraint on the apparently anomalous...
307
Authors: Won Beom Kim, Jeom Kee Paik
Abstract:In this research, corrosion fatigue tests using 490MPa TMCP steel were performed in synthetic seawater condition to investigate the...
1043
Authors: Jin San Ju, Xiu Gen Jiang, Xiang Rong Fu
Abstract:This paper primarily presents the development and application of automation computational analysis techniques to determine the dynamic...
705
Authors: F. Ricci, F. Franco, Nicola Montefusco
Abstract:In this paper, the mechanisms of propagation of the damage in aluminum panels repaired with bonded composite patches of different mechanical...
597