Paper Title:
Microstructure and Damage Evolution of Ceramic Matrix Composite
  Abstract

The tensile damage evolution of 2D plain woven C/SiC composites strengthened with 1K and 3K carbon fiber bundles and microstructure’s influence on material’s damage evolution were investigated using the Acoustic Emission technology (AE) and failure observation. Experimental results reveal that damage evolution of these two kinds of composites is a gradual procedure and this procedure consists of three phases. There is no damage during the first phase. During the second phase, the damage, mainly consisting of matrix microcrack cracking, interface debonding of fiber and joining of microcrack, random takes place in the whole area of specimen. During the third damage phase, the damage, mainly consisting of macrocrack cracking, fibers breaking and fibers pulling out, mainly takes place in the local failure area of specimen. Because the microstructures of composites with 1K and 3K carbon fiber bundles are different, their damage mechanisms are different. Composite strengthened with 1K carbon fiber bundles get in second phase at 90% failure stress, and their main energy dissipation occurred during the second damage phase. While Composite strengthened with 3K carbon fiber bundles get in second phase at 80% failure stress, and their main energy dissipation occurred during the third damage phase.

  Info
Periodical
Key Engineering Materials (Volumes 326-328)
Edited by
Soon-Bok Lee and Yun-Jae Kim
Pages
1177-1180
DOI
10.4028/www.scientific.net/KEM.326-328.1177
Citation
W. G. Pan, G. Q. Jiao, B. Wang, "Microstructure and Damage Evolution of Ceramic Matrix Composite", Key Engineering Materials, Vols. 326-328, pp. 1177-1180, 2006
Online since
December 2006
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Jin Kyung Lee, Young Chul Park, Joon Hyun Lee, Sang Ll Lee, Kwan Do Hur
Abstract:Tensile residual stress occurring due to the difference of coefficients of thermal expansion between fiber and matrix is one of the serious...
1379
Authors: Qian Feng, Shao Ming Dong, Yu Sheng Ding, Qing Zhou, Akira Kohyama
Abstract:Chopped fiber and a hybrid reinforcement of chopped and continuous fibers were used for fabricating SiC/SiC composites. Under the selected...
1257
Authors: Xiao Bin Song, Hong Yong Tang, Wei Ping Zhang, Xiang Lin Gu
Abstract:This paper presents the results of an experimental study on the compressive stress-strain relationship of wood confined with fiber composite...
1207
Authors: Xiao Yuan Pei, Jia Lu Li
Chapter 1: Material Science
Abstract:The modal properties of carbon fiber woven fabric / epoxy resin composites with different fiber orientation angles were studied by using...
345
Authors: Yan Jun Chang, Gui Qiong Jiao, Ke Shi Zhang
Chapter 7: Computational Mechanics
Abstract:Based on the analysis of the woven structure, the compressive fracture process and strength of a 2.5D-C/SiC ceramic matrix composite were...
2859