Paper Title:
MEMS Based Metal Plated Silicon Package for High Power LED
  Abstract

By the development of high power LED for solid states lighting, the requirement for driving current has increased critically, thereby increasing power dissipation. Heat flux corresponds to power dissipation is mainly generated in p-n junction of LED, so the effective removal of heat is the key factor for long lifetime of LED chip. In this study, we newly proposed the silicon package for high power LED using MEMS technology and estimated its heat dissipation characteristic. Our silicon package structure is composed of base and reflector cup. The role of base is that settle LED chip at desired position and supply electrical interconnection for LED operation, and finally transfer the heat from junction region to outside. For improved heat transfer, we introduced the heat conductive metal plated trench structure at the opposite side of LED attached side. The depth and the diameter of trench were 150 and 100um, respectively. Copper with high thermal conductivity than silicon was filled in trench by electroplating and the thickness of copper was about 100um. Reflector cup was formed by anisotropic wet etching and then, silicon package platform could be fabricated by eutectic bonding between base and reflector cup. The thermal resistance of silicon package was about 6 to 7K/W from junction to case, and also, thermal resistance reduction of 0.64K/W was done by metal plated trench. This result could be comparable to that of other high power LED package. Our silicon package platform is easy to be expanded into array and wafer level package. So, it is suitable for future high efficiency and low cost package.

  Info
Periodical
Key Engineering Materials (Volumes 326-328)
Edited by
Soon-Bok Lee and Yun-Jae Kim
Pages
309-312
DOI
10.4028/www.scientific.net/KEM.326-328.309
Citation
S. J. Lee, J. H. Park, C. H. Lim, W. K. Jeong, S. M. Choi, Y. S. Oh, "MEMS Based Metal Plated Silicon Package for High Power LED", Key Engineering Materials, Vols. 326-328, pp. 309-312, 2006
Online since
December 2006
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Tao Liu, Guo Qiang Lv, Qi Bin Feng, Yun Fei Chang
III. Display Technologies
Abstract:Different from common commercial liquid crystal displays (LCDs), LCDs in military applications have some special requirements including high...
208
Authors: Lei Wu, Xiao Yun Xiong, De Xing Wang
Chapter 16: Semiconductor Materials Manufacturing
Abstract:In this study, the junction temperature (Tj) and thermal resistance (Rth) of five high-power multi-chip COB...
1332
Authors: P. Anithambigai, D. Mutharasu
Chapter 16: Semiconductor Materials Manufacturing
Abstract:This study elucidates the significance of thermal transient measurement based on structure function evaluation particularly on high power...
1363
Authors: Chuan Chen, Long Sheng Lu, Qiu Gang Fu
Chapter 2: Materials Science and Engineering
Abstract:High-power LED street-lighting with advantages including long lifespan, great luminescent efficiency, lower power consumption and superior...
962
Authors: Jian Ming Hong, Xiao Yun Li, Ping Juan Niu
Chapter 16: Optoelectronic Information Technology and Systems
Abstract:LEDs for lighting application are becoming widely adopted due to economic, energy and environmental reasons. LEDs are conventionally powerd...
2075