Paper Title:
A Novel Prediction Technique for Interfacial Crack Growth of Electronic Interconnect
  Abstract

The predicted fatigue life of packaging structures using conventional procedures of finite element analysis (FEA) would be higher than an actual condition as a result of the perfect bonding interface assumed in the modeling. Actually, the crack extension of the solder joints along with the bi-material interface during the thermal cycling test had been observed. And, the crack models with an assumed crack length had widely adopted which only responded to the stress distribution at that moment instead of considering the effect of the whole stress history on the crack advancement. For this reason, a node tie-release crack prediction technique integrated with a nonlinear FEA was established in this research to further estimation for the thermo-mechanical reliability of solder joints. To proof our proposed technique, a double-layer wafer level chip-scaling package (DLWLCSP) was implemented as a testing vehicle to demonstrate the difference between the solder joint reliability, which was compared to the application of conventional FEA. Combined with the fracture criterion, the predicted result of using the present technique shown a lower fatigue life of solder joints than another, which using conventional one when the phenomenon of crack growth in dummy solder joints were considered. Finally, the actual experimental test showed the similar results as presented tie-release crack prediction analysis.

  Info
Periodical
Key Engineering Materials (Volumes 326-328)
Edited by
Soon-Bok Lee and Yun-Jae Kim
Pages
533-536
DOI
10.4028/www.scientific.net/KEM.326-328.533
Citation
C. C. Lee, H. T. Ku, C. C. Chiu, K. N. Chiang, "A Novel Prediction Technique for Interfacial Crack Growth of Electronic Interconnect", Key Engineering Materials, Vols. 326-328, pp. 533-536, 2006
Online since
December 2006
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Tomáš Denk, Vladislav Oliva, Aleš Materna
Abstract:A two-parameter constraint-based fracture mechanics approach is used to explain the effect of the constraint on the apparently anomalous...
307
Authors: Masanori Kikuchi, Yoshitaka Wada, Masafumi Takahashi, Yu Long Li
Abstract:Fatigue crack growth under mixed mode loading conditions is simulated using S-FEM. By using S-FEM technique, only local mesh should be...
133
Authors: F. Ricci, F. Franco, Nicola Montefusco
Abstract:In this paper, the mechanisms of propagation of the damage in aluminum panels repaired with bonded composite patches of different mechanical...
597
Authors: Li Hong Gao, Ge Ning Xu, Ping Yang
Structural Strength and Robustness
Abstract:The random formula on fatigue crack growth is deduced by the fatigue crack data and the improved Taguchi method, and the sample estimates of...
1277