Paper Title:
Study on Anodic Smoothening Velocity in Electrochemical Abrasive Lapping
  Abstract

By analysing the change of the anodic surface topography in Electrochemical Abrasive Lapping (ECAL), the influence of the lapping action and the electrochemical action on the anodic smoothening velocity is studied. In electrochemical finishing, the micro-peaks on the anodic surface could be smoothened quickly by electrochemical action and the surface topography presents the profile wave, but in ECAL, the profile wave after electrochemical action could be divided into micro-peaks renewedly by lapping action and the alternation of electrochemical action and lapping action makes the surface topography before electrochemical action present profile micro-peaks, which will increase the anodic smoothening velocity. The influence of machining parameters, such as abrasive grain sizes, tool’s pressure, abrasive content, frictional velocity and current density etc, on the anodic smoothening velocity is discussed in detailed.

  Info
Periodical
Edited by
Dongming Guo, Tsunemoto Kuriyagawa, Jun Wang and Jun’ichi Tamaki
Pages
297-302
DOI
10.4028/www.scientific.net/KEM.329.297
Citation
G. B. Pang, W. J. Xu, X. Y. Wang, A.D.Y. Xie, H.Y. Li, H. Wang, "Study on Anodic Smoothening Velocity in Electrochemical Abrasive Lapping", Key Engineering Materials, Vol. 329, pp. 297-302, 2007
Online since
January 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Wan Shan Wang, Chong Su, Tian Biao Yu, Li Da Zhu
Abstract:Based on virtual reality technology, a friendly human-computer interaction interface and virtual machining environment were developed by...
216
Authors: Suo Xian Yuan, Yun Xia Hao
Abstract:In recent years, the demands on product performance are improving, particularly in the aviation; electronics, precision instruments and other...
713
Authors: Ya Dong Gong, Yue Ming Liu, Jun Cheng, J.F. Zhang
Abstract:Grinding characteristics brought by the grinding speed reduction and geometrical model differences between micro-grinding and conventional...
6
Authors: Qian Fa Deng, Ping Zhao, Bing Hai Lv, Ju Long Yuan, Zhi Wei Wang
Chapter 1: Grinding Technology
Abstract:Abrasive machining is an important process for the manufacturing of advanced ceramics. The demand for advanced ceramics with better quality...
251
Authors: Heng Zhen Dai, Zhu Ji Jin, Shang Gao, Z.C. Tao
Chapter 1: Grinding Technology
Abstract:Aiming at the severe surface/subsurface damage of Al2O3ceramic ground by diamond grinding wheel, the...
270